3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-14 06:45:59 +01:00
tayral edd1ff4529 Restructuring documentation.
A first general restructuration of the doc according to the pattern [tour|tutorial|reference].
In the reference part, objects are documented per topic.
In each topic, [definition|c++|python|hdf5] (not yet implemented)
2014-10-18 12:21:08 +01:00

113 lines
2.6 KiB
ReStructuredText

.. highlight:: c
.. _arr_map_fold:
Functional constructs: map & fold
###########################################
Two standard functional constructs are provided:
* *map* that promotes a function acting on the array element to an array function, acting
element by element.
* *fold* is the reduction of a function on the array.
.. _map:
map
========================================================
* **Purpose** :
map promotes any function into an `array function`, acting term by term.
* **Synopsis** ::
template<class F> auto map (F f);
If `f` is a function, or a function object ::
T2 f(T1)
Then map(f) is a function::
template<ImmutableCuboidArray A> auto map(f) (A const &)
with:
* A::value_type == T1
* The returned type of map(f) models the :ref:`ImmutableCuboidArray` concept
* with the same domain as A
* with value_type == T2
* **Example**:
.. triqs_example:: ./map_0.cpp
fold
========================================================
* **Purpose** :
fold implements the folding (or reduction) on the array.
* **Syntax** :
If `f` is a function, or a function object of synopsis (T, R being 2 types) ::
R f (R , T)
then ::
auto F = fold(f);
is a callable object which can fold any array of value_type T.
So, if
* A is a type which models the :ref:`ImmutableCuboidArray` concept
(e.g. an array , a matrix, a vector, an expression, ...)
* A::value_type is T
then ::
fold (f) ( A, R init = R() ) = f(f(f(f(init, a(0,0)), a(0,1)),a(0,2)),a(0,3), ....)
Note that:
* The order of traversal is the same as foreach.
* The precise return type of fold is an implementation detail, depending on the precise type of f,
use auto to keep it.
* The function f will be inlined if possible, leading to efficient algorithms.
* fold is implemented using a foreach loop, hence it is efficient.
* **Example**:
Many algorithms can be written in form of map/fold.
The function :ref:`arr_fnt_sum` which returns the sum of all the elements of the array is implemented as ::
template <class A>
typename A::value_type sum(A const & a) { return fold ( std::plus<>()) (a); }
or the Frobenius norm of a matrix,
.. math::
\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} | a_{ij} | ^2
reads :
.. triqs_example:: ./map_1.cpp
Note in this example:
* the simplicity of the code
* the genericity: it is valid for any dimension of array.
* internally, the library will rewrite it as a series of for loop, ordered in the TraversalOrder of the array
and inline the lambda.