mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 22:18:23 +01:00
cfe3532c94
- implement transposed_view for arrays. - .transpose method for gf - wrapped to python - add call op. for GfImTime, using C++ - Added ChangeLog - rm matrix_stack - start cleaning old code
111 lines
5.0 KiB
C++
111 lines
5.0 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_ARRAYS_INDEXMAP_MEMORY_LAYOUT_H
|
|
#define TRIQS_ARRAYS_INDEXMAP_MEMORY_LAYOUT_H
|
|
#include "../permutation.hpp"
|
|
#include "../../impl/flags.hpp"
|
|
|
|
namespace triqs { namespace arrays {
|
|
|
|
namespace indexmaps { namespace mem_layout {
|
|
/* The storage order is given by a permutation P stored in a ull_t (unsigned long long) as in permutations::..
|
|
* P[0] : the fastest index,
|
|
* P[RANK-1] : the slowest index
|
|
* Example :
|
|
* 012 : Fortran, the first index is the fastest
|
|
* 210: C the last index is the fastest
|
|
* 120 : storage (i,j,k) is : index j is fastest, then k, then i
|
|
*
|
|
* index_to_memory_rank : i ---> r : to the index (0,1, ... etc), associates the rank in memory
|
|
* e.g. r=0 : fastest index, r = RANK-1 : the slowest
|
|
* memory_rank_to_index : the inverse mapping : r---> i :
|
|
* 0-> the fastest index, etc..
|
|
*
|
|
* All these computations can be done *at compile time* (constexpr)
|
|
*/
|
|
|
|
constexpr int memory_rank_to_index(ull_t p, int r) { return permutations::apply(p, r);}
|
|
constexpr int index_to_memory_rank(ull_t p, int r) { return permutations::apply(permutations::inverse(p), r);}
|
|
|
|
constexpr bool is_fortran (ull_t p){ return p == permutations::identity(permutations::size(p));}
|
|
constexpr bool is_c (ull_t p){ return p == permutations::ridentity(permutations::size(p));}
|
|
|
|
constexpr ull_t fortran_order (int n){ return permutations::identity(n);}
|
|
constexpr ull_t c_order (int n){ return permutations::ridentity(n);}
|
|
|
|
template<int n> struct fortran_order_tr { static constexpr ull_t value = permutations::identity(n);};
|
|
template<int n> struct c_order_tr { static constexpr ull_t value = permutations::ridentity(n);};
|
|
|
|
// From the flag in the template definition to the real traversal_order
|
|
// 0 -> C order
|
|
// 1 -> Fortran Order
|
|
// Any other number interpreted as a permutation ?
|
|
|
|
constexpr ull_t _get_traversal_order (int rank, ull_t fl, ull_t to) { return (flags::traversal_order_c(fl) ? c_order(rank) :
|
|
(flags::traversal_order_fortran(fl) ? fortran_order(rank) : (to==0 ? c_order(rank) : to )));}
|
|
|
|
template< int rank, ull_t fl, ull_t to> struct get_traversal_order { static constexpr ull_t value = _get_traversal_order (rank,fl,to); };
|
|
}}
|
|
|
|
struct memory_layout_fortran {};
|
|
struct memory_layout_c {};
|
|
|
|
#define FORTRAN_LAYOUT (triqs::arrays::memory_layout_fortran())
|
|
#define C_LAYOUT (triqs::arrays::memory_layout_fortran())
|
|
|
|
// stores the layout == order of the indices in memory
|
|
// wrapped into a little type to make constructor unambigous.
|
|
template<int Rank>
|
|
struct memory_layout {
|
|
ull_t value;
|
|
explicit memory_layout (ull_t v) : value(v) {assert((permutations::size(v)==Rank));}
|
|
explicit memory_layout (char ml='C') {
|
|
assert( (ml=='C') || (ml == 'F'));
|
|
value = (ml=='F' ? indexmaps::mem_layout::fortran_order(Rank) : indexmaps::mem_layout::c_order(Rank));
|
|
}
|
|
memory_layout (memory_layout_fortran) { value = indexmaps::mem_layout::fortran_order(Rank); }
|
|
memory_layout (memory_layout_c) { value = indexmaps::mem_layout::c_order(Rank); }
|
|
template<typename ... INT>
|
|
explicit memory_layout(int i0, int i1, INT ... in) : value (permutations::permutation(i0,i1,in...)){
|
|
static_assert( sizeof...(in)==Rank-2, "Error");
|
|
}
|
|
memory_layout (const memory_layout & C) = default;
|
|
memory_layout (memory_layout && C) = default;
|
|
memory_layout & operator =( memory_layout const &) = default;
|
|
memory_layout & operator =( memory_layout && x) = default;
|
|
|
|
bool operator ==( memory_layout const & ml) const { return value == ml.value;}
|
|
bool operator !=( memory_layout const & ml) const { return value != ml.value;}
|
|
|
|
friend std::ostream &operator<<(std::ostream &out, memory_layout const &s) {
|
|
permutations::print(out, s.value);
|
|
return out;
|
|
|
|
}
|
|
};
|
|
|
|
template <int R, typename... INT> memory_layout<R> transpose(memory_layout<R> ml, INT... is) {
|
|
static_assert(sizeof...(INT)==R, "!");
|
|
return memory_layout<R>{permutations::compose(ml.value, permutations::inverse(permutations::permutation(is...)))};
|
|
}
|
|
}}//namespace triqs::arrays
|
|
#endif
|