mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 06:43:40 +01:00
b534936589
- The previous version of the * operator for matrix was too clever. It was giving a lazy object and then rewriting C = A *B into gemm (a,A,B,0,C). The pb was in case of aliasing : when e.g. C = A, or is a part of A. gemm is not correct that case, and as a result generic code like a = a *b may not be correct in matrix case, which is unacceptable. - So we revert to a simple * operator for matrix that does immediate computation. Same thing for matrix* vector - we also suppress a_x_ty class. -> for M = a * b, when M is a matrix, there is no overhead due to move assignment -> however, when M is a view, there is an additionnal copy. -Correctness comes first, hence the fix. However, if one wants more speed and one can guarantee that there is no aliasing possible, then one has to write a direct gemm call. -> det_manip class was adapted, since in that case, we can show there no alias, and we want the speed gain, so the * ops where replaced by direct blas call (using the array blas interface). -> also gemm, gemv, ger were overloaded in the case the return matrix/vector (i.e. last parameter of the function) is not an lvalue, but a temporary view created on the fly.
139 lines
6.9 KiB
C++
139 lines
6.9 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
|
|
#define TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
|
|
#include "./vector_algebra.hpp"
|
|
#include "../matrix.hpp"
|
|
#include "../linalg/det_and_inverse.hpp"
|
|
#include "../blas_lapack/gemv.hpp"
|
|
#include "../blas_lapack/gemm.hpp"
|
|
namespace triqs { namespace arrays {
|
|
|
|
// matrix * matrix
|
|
template<typename A, typename B, typename Enable = void> struct _matmul_rvalue {};
|
|
|
|
template<typename A, typename B> struct _matmul_rvalue<A,B, ENABLE_IFC(ImmutableMatrix<A>::value && ImmutableMatrix<B>::value)> {
|
|
typedef typename std::remove_const<typename A::value_type>::type V1;
|
|
typedef typename std::remove_const<typename B::value_type>::type V2;
|
|
typedef matrix<typename std::decay<decltype( V1{} * V2{})>::type> type;
|
|
};
|
|
|
|
template<typename A, typename B>
|
|
typename _matmul_rvalue<A,B>::type
|
|
operator * (A const & a, B const & b) {
|
|
if (second_dim(a) != first_dim(b)) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in A*B "<< a<<" "<< b;
|
|
auto R = typename _matmul_rvalue<A,B>::type( first_dim(a), second_dim(b));
|
|
blas::gemm(1.0,a, b, 0.0, R);
|
|
return R;
|
|
}
|
|
|
|
// matrix * vector
|
|
template<typename M, typename V, typename Enable = void> struct _mat_vec_mul_rvalue {};
|
|
|
|
template<typename M, typename V> struct _mat_vec_mul_rvalue<M,V, ENABLE_IFC(ImmutableMatrix<M>::value && ImmutableVector<V>::value)> {
|
|
typedef typename std::remove_const<typename M::value_type>::type V1;
|
|
typedef typename std::remove_const<typename V::value_type>::type V2;
|
|
typedef vector<typename std::decay<decltype(V1{} * V2{})>::type> type;
|
|
};
|
|
|
|
template<typename M, typename V>
|
|
typename _mat_vec_mul_rvalue<M,V>::type
|
|
operator * (M const & m, V const & v) {
|
|
if (second_dim(m) != v.size()) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in Matrix*Vector "<< m<<" "<< v;
|
|
auto R = typename _mat_vec_mul_rvalue<M,V>::type(first_dim(m));
|
|
blas::gemv(1.0,m,v,0.0,R);
|
|
return R;
|
|
}
|
|
|
|
// expression template
|
|
template<typename Tag, typename L, typename R, bool scalar_are_diagonal_matrices= false>
|
|
struct matrix_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
|
|
typedef typename keeper_type<L,scalar_are_diagonal_matrices>::type L_t;
|
|
typedef typename keeper_type<R,scalar_are_diagonal_matrices>::type R_t;
|
|
static_assert( get_rank<R_t>::value==0 || get_rank<L_t>::value==0 || get_rank<L_t>::value == get_rank<R_t>::value, "rank mismatch in matrix operations");
|
|
typedef typename std::result_of<operation<Tag>(typename L_t::value_type,typename R_t::value_type)>::type value_type;
|
|
typedef typename std::remove_cv< typename std::remove_reference<typename std::result_of<combine_domain(L_t,R_t)>::type>::type>::type domain_type;
|
|
|
|
L_t l; R_t r;
|
|
template<typename LL, typename RR> matrix_expr(LL && l_, RR && r_) : l(std::forward<LL>(l_)), r(std::forward<RR>(r_)) {}
|
|
|
|
domain_type domain() const { return combine_domain()(l,r); }
|
|
|
|
//template<typename KeyType> value_type operator[](KeyType && key) const { return operation<Tag>()(l[std::forward<KeyType>(key)] , r[std::forward<KeyType>(key)]);}
|
|
template<typename ... Args> value_type operator()(Args && ... args) const { return operation<Tag>()(l(std::forward<Args>(args)...) , r(std::forward<Args>(args)...));}
|
|
friend std::ostream &operator <<(std::ostream &sout, matrix_expr const &expr){return sout << "("<<expr.l << " "<<operation<Tag>::name << " "<<expr.r<<")" ; }
|
|
};
|
|
|
|
template<typename L> // a special case : the unary operator !
|
|
struct matrix_unary_m_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
|
|
typedef typename keeper_type<L>::type L_t;
|
|
typedef typename L_t::value_type value_type;
|
|
typedef typename L_t::domain_type domain_type;
|
|
L_t l;
|
|
template<typename LL> matrix_unary_m_expr(LL && l_) : l(std::forward<LL>(l_)) {}
|
|
|
|
domain_type domain() const { return l.domain(); }
|
|
|
|
//template<typename KeyType> value_type operator[](KeyType&& key) const {return -l[key];}
|
|
template<typename ... Args> value_type operator()(Args && ... args) const { return -l(std::forward<Args>(args)...);}
|
|
friend std::ostream &operator <<(std::ostream &sout, matrix_unary_m_expr const &expr){return sout << '-'<<expr.l; }
|
|
};
|
|
|
|
// Now we can define all the C++ operators ...
|
|
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
|
|
template<typename A1, typename A2>\
|
|
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, matrix_expr<tags::TAG, A1,A2>>::type\
|
|
operator OP (A1 const & a1, A2 const & a2) { return matrix_expr<tags::TAG, A1,A2>(a1,a2);}
|
|
|
|
DEFINE_OPERATOR(plus, +, ImmutableMatrix,ImmutableMatrix);
|
|
DEFINE_OPERATOR(minus, -, ImmutableMatrix,ImmutableMatrix);
|
|
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
|
|
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
|
|
DEFINE_OPERATOR(multiplies, *, is_in_ZRC,ImmutableMatrix);
|
|
DEFINE_OPERATOR(multiplies, *, ImmutableMatrix,is_in_ZRC);
|
|
DEFINE_OPERATOR(divides, /, ImmutableMatrix,is_in_ZRC);
|
|
#undef DEFINE_OPERATOR
|
|
|
|
// the addition/substraction of diagonal matrix is special : all scalar are diagonal matrices here...
|
|
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
|
|
template<typename A1, typename A2>\
|
|
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, matrix_expr<tags::TAG, A1,A2,true>>::type\
|
|
operator OP (A1 const & a1, A2 const & a2) { return matrix_expr<tags::TAG, A1,A2,true>(a1,a2);}
|
|
|
|
DEFINE_OPERATOR(plus, +, ImmutableMatrix,is_in_ZRC);
|
|
DEFINE_OPERATOR(plus, +, is_in_ZRC,ImmutableMatrix);
|
|
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
|
|
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
|
|
#undef DEFINE_OPERATOR
|
|
|
|
// the unary is special
|
|
template<typename A1> typename std::enable_if<ImmutableMatrix<A1>::value, matrix_unary_m_expr<A1>>::type
|
|
operator - (A1 const & a1) { return {a1};}
|
|
|
|
|
|
template<typename A, typename M> // anything / matrix ---> anything * inverse(matrix)
|
|
typename boost::lazy_enable_if< ImmutableMatrix<M>, type_of_mult<A, inverse_lazy <M> > >::type
|
|
operator/ (A const & a, M const & m) { return a * inverse(m);}
|
|
|
|
}}//namespace triqs::arrays
|
|
#endif
|
|
|