3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 22:18:23 +01:00
dft_tools/test/triqs/arrays/expr_matrix.cpp
Olivier Parcollet f2c7d449cc First commit : triqs libs version 1.0 alpha1
for earlier commits, see TRIQS0.x repository.
2013-07-17 19:24:07 +02:00

97 lines
2.9 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "./common.hpp"
#include "./src/array.hpp"
#include "./src/matrix.hpp"
#include <boost/type_traits/is_convertible.hpp>
#include <iostream>
#include <triqs/arrays/asserts.hpp>
using namespace triqs::arrays;
namespace tqa = triqs::arrays;
using namespace indexmaps;
using namespace storages;
#include "triqs/utility/typeid_name.hpp"
int main(int argc, char **argv) {
matrix <long> A (2,2), B(2,2),C(2,2);
for (int i =0; i<2; ++i)
for (int j=0; j<2; ++j)
{ A(i,j) = 10*i+ j;B(i,j) = i+ 2*j;}
std::cout<<" A = "<<A<<std::endl;
std::cout<<" B = "<<B<<std::endl;
std::cout<< (A+2*B) <<std::endl;
std::cout<<"-------"<<std::endl;
std::cout<< (A+2*B).domain()<<std::endl;
std::cout<<"----EVAL ---"<<std::endl;
C= A + 2*B;
std::cout<<" C = A + 2*B = "<<C<<std::endl;
C= std::plus<matrix<long> >()(A,B);
std::cout<<" C = A+B = "<<C<<std::endl;
// matrix multiplication
matrix<double> Af (2,2), Bf(2,2),Cf(2,2), id (2,2);
Af = A; Bf = B; Bf(0,0) = 1; Cf()=0; id () = 1;
std::cout<<" Af = "<<Af<<std::endl;
std::cout<<" Bf = "<<Bf<<std::endl;
std::cout<< (Af* Bf).domain()<<std::endl;
std::cout<<" computing Cf = Af * Bf "<<std::endl;
Cf = Af * Bf;
std::cout<<" Cf = "<<Cf<<std::endl;
std::cout<<" matrix( Af * Bf )"<<matrix<double>(Af*Bf)<<std::endl;
std::cout<<" matrix( Af * (Bf + Cf) )"<<matrix<double>(Af*(Bf+ Cf))<<std::endl;
TEST (A);
TEST (tqa::make_matrix( 2*A ));
TEST (A+ 2);
TEST (tqa::make_matrix(A+2 ));
TEST (make_matrix(1 + A ));
// test the vector ops : scalar * vector, vector + vector, ...
tqa::vector<double> V(3); V(0) = 1; V(1)= 2; V(2) = 3;
tqa::vector<double> V2(3); V2(0) = 10; V2(1)= 20; V2(2) = 30;
TEST (tqa::make_vector( V2 + 2.0 *V));
// test the division by a matrix
TEST(Af);
TEST(1/Af);
TEST(make_matrix(2/Af));
TEST(make_matrix(Af/2));
assert_all_close( make_matrix(Af/Af), id , 1.e-14);
//TEST(make_matrix(Af/Af));
// matrix <long> AA(3,3); TEST( tqa::make_matrix(A+ 2* AA)); // exception because of size...
return 0;
}