from math import sqrt from scipy.misc import factorial as fact from itertools import product import numpy as np # The interaction matrix in desired basis # U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4) def U_matrix(l, radial_integrals=None, U_int=None, J_hund=None, basis="spherical", T=None): """Calculate U matrix being given either radial_integrals or U_int and J_hund. l = angular momentum of shell being treated (l=2 for d shell, l=3 for f shell) radial_integrals = [F0,F2,F4,..] (default None) U_int, J_hund = values to use to compute radial_integrals (default None), basis = "spherical", "cubic", or "other", T = transformation matrix from spherical to desired basis, if basis='other' (default None)""" # Check all necessary information is present and consistent if radial_integrals is None and (U_int is None and J_hund is None): raise ValueError("U_matrix: provide either the radial_integrals or U_int and J_hund.") if radial_integrals is None and (U_int is not None and J_hund is not None): radial_integrals = U_J_to_radial_integrals(l, U_int, J_hund) if radial_integrals is not None and (U_int is not None and J_hund is not None): if len(radial_integrals)-1 != l: raise ValueError("U_matrix: inconsistency in l and number of radial_integrals provided.") if (radial_integrals - U_J_to_radial_integrals(l, U_int, J_hund)).any() != 0.0: print "Warning: U_matrix: radial_integrals provided do not match U_int and J_hund. Using radial_integrals to calculate spherical U_matrix." # Full interaction matrix # Basis of spherical harmonics Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2} # U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4) U_matrix = np.zeros((2*l+1,2*l+1,2*l+1,2*l+1),dtype=float) m_range = range(-l,l+1) for n, F in enumerate(radial_integrals): k = 2*n for m1, m2, m3, m4 in product(m_range,m_range,m_range,m_range): U_matrix[m1+l,m2+l,m3+l,m4+l] += F * angular_matrix_element(l,k,m1,m2,m3,m4) # Transform from spherical basis if needed if basis == "cubic": T = spherical_to_cubic(l) if basis == "other" and T is None: raise ValueError("U_matrix: provide T for other bases.") if T is not None: U_matrix = transform_U_matrix(U_matrix, T) return U_matrix # Convert full 4-index U matrix to 2-index density-density form def reduce_4index_to_2index(U_4index): """Reduces the four-index matrix to two-index matrices.""" size = len(U_4index) # 2l+1 U = np.zeros((size,size),dtype=float) # matrix for same spin Uprime = np.zeros((size,size),dtype=float) # matrix for opposite spin m_range = range(size) for m,mp in product(m_range,m_range): U[m,mp] = U_4index[m,mp,m,mp].real - U_4index[m,mp,mp,m].real Uprime[m,mp] = U_4index[m,mp,m,mp].real return U, Uprime # Construct the 2-index matrices for the density-density form def U_matrix_kanamori(n_orb, U_int, J_hund): """Calculate the Kanamori U and Uprime matrices.""" U = np.zeros((n_orb,n_orb),dtype=float) # matrix for same spin Uprime = np.zeros((n_orb,n_orb),dtype=float) # matrix for opposite spin m_range = range(n_orb) for m,mp in product(m_range,m_range): if m == mp: Uprime[m,mp] = U_int else: U[m,mp] = U_int - 3.0*J_hund Uprime[m,mp] = U_int - 2.0*J_hund return U, Uprime #FIXME WIEN CONVENTION first eg then t2g # Get t2g or eg components def t2g_submatrix(U): """Return only the t2g part of the full d-manifold two- or four-index U matrix.""" return subarray(U, len(U.shape)*[(0,1,3)]) def eg_submatrix(U): """Return only the eg part of the full d-manifold two- or four-index U matrix.""" return subarray(U, len(U.shape)*[(2,4)]) # Transform the interaction matrix into another basis def transform_U_matrix(U_matrix, T): """Transform the interaction matrix into another basis by applying matrix T.""" return np.einsum("ij,kl,jlmo,mn,op",np.conj(T),np.conj(T),U_matrix,np.transpose(T),np.transpose(T)) # Rotation matrices: complex harmonics to cubic harmonics # Complex harmonics basis: ..., Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}, ... def spherical_to_cubic(l): """Returns the spherical harmonics to cubic harmonics rotation matrix.""" size = 2*l+1 T = np.zeros((size,size),dtype=complex) if l == 0: cubic_names = ("s") elif l == 1: cubic_names = ("x","y","z") T[0,0] = 1.0/sqrt(2); T[0,2] = -1.0/sqrt(2) T[1,0] = 1j/sqrt(2); T[1,2] = 1j/sqrt(2) T[2,1] = 1.0 elif l == 2: cubic_names = ("xy","yz","z^2","xz","x^2-y^2") T[0,0] = 1j/sqrt(2); T[0,4] = -1j/sqrt(2) T[1,1] = 1j/sqrt(2); T[1,3] = 1j/sqrt(2) T[2,2] = 1.0 T[3,1] = 1.0/sqrt(2); T[3,3] = -1.0/sqrt(2) T[4,0] = 1.0/sqrt(2); T[4,4] = 1.0/sqrt(2) elif l == 3: cubic_names = ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)") T[0,0] = 1.0/sqrt(2); T[0,6] = -1.0/sqrt(2) T[1,1] = 1.0/sqrt(2); T[1,5] = 1.0/sqrt(2) T[2,2] = 1.0/sqrt(2); T[2,4] = -1.0/sqrt(2) T[3,5] = 1.0 T[4,2] = 1j/sqrt(2); T[4,4] = 1j/sqrt(2) T[5,1] = 1j/sqrt(2); T[5,5] = -1j/sqrt(2) T[6,0] = 1j/sqrt(2); T[6,6] = 1j/sqrt(2) else: raise ValueError("spherical_to_cubic: implemented only for l=0,1,2,3") return T # Names of cubic harmonics def cubic_names(l): if l == 0 or l == 's': return ("s") elif l == 1 or l == 'p': return ("x","y","z") elif l == 2 or l == 'd': return ("xy","yz","z^2","xz","x^2-y^2") elif l == 't2g': return ("xy","yz","xz") elif l == 'eg': return ("z^2","x^2-y^2") elif l == 3 or l == 'f': return ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)") else: raise ValueError("cubic_names: implemented only for l=0,1,2,3") # Convert U,J -> radial integrals F_k def U_J_to_radial_integrals(l, U_int, J_hund): """Determines the radial integrals F_k from U_int and J_hund.""" F = np.zeros((l+1),dtype=float) if l == 2: F[0] = U_int F[1] = J_hund * 14.0 / (1.0 + 0.63) F[2] = 0.630 * F[1] elif l == 3: F[0] = U_int F[1] = 6435.0 * J_hund / (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0) F[2] = 451.0 * F[1] / 675.0 F[3] = 1001.0 * F[1] / 2025.0 else: raise ValueError("U_J_to_radial_integrals: implemented only for l=2,3") return F # Angular matrix elements of particle-particle interaction # (2l+1)^2 ((l 0) (k 0) (l 0))^2 \sum_{q=-k}^{k} (-1)^{m1+m2+q} ((l -m1) (k q) (l m3)) ((l -m2) (k -q) (l m4)) def angular_matrix_element(l, k, m1, m2, m3, m4): result = 0 for q in range(-k,k+1): result += three_j_symbol((l,-m1),(k,q),(l,m3))*three_j_symbol((l,-m2),(k,-q),(l,m4))*(-1.0 if (m1+q+m2) % 2 else 1.0) result *= (2*l+1)**2 * (three_j_symbol((l,0),(k,0),(l,0))**2) return result # Wigner 3-j symbols # ((j1 m1) (j2 m2) (j3 m3)) def three_j_symbol(jm1, jm2, jm3): j1, m1 = jm1 j2, m2 = jm2 j3, m3 = jm3 if (m1+m2+m3 != 0 or m1 < -j1 or m1 > j1 or m2 < -j2 or m2 > j2 or m3 < -j3 or m3 > j3 or j3 > j1 + j2 or j3 < abs(j1-j2)): return .0 result = -1.0 if (j1-j2-m3) % 2 else 1.0 result *= sqrt(fact(j1+j2-j3)*fact(j1-j2+j3)*fact(-j1+j2+j3)/fact(j1+j2+j3+1)) result *= sqrt(fact(j1-m1)*fact(j1+m1)*fact(j2-m2)*fact(j2+m2)*fact(j3-m3)*fact(j3+m3)) t_min = max(j2-j3-m1,j1-j3+m2,0) t_max = min(j1-m1,j2+m2,j1+j2-j3) t_sum = 0 for t in range(t_min,t_max+1): t_sum += (-1.0 if t % 2 else 1.0)/(fact(t)*fact(j3-j2+m1+t)*fact(j3-j1-m2+t)*fact(j1+j2-j3-t)*fact(j1-m1-t)*fact(j2+m2-t)) result *= t_sum return result # Clebsch-Gordan coefficients # < j1 m1 j2 m2 | j3 m3 > = (-1)^{j1-j2+m3} \sqrt{2j3+1} ((j1 m1) (j2 m2) (j3 -m3)) def clebsch_gordan(jm1, jm2, jm3): norm = sqrt(2*jm3[0]+1)*(-1 if jm1[0]-jm2[0]+jm3[1] % 2 else 1) return norm*three_j_symbol(jm1,jm2,(jm3[0],-jm3[1])) # Create subarray containing columns in idxlist # e.g. idxlist = [(0),(2,3),(0,1,2,3)] gives # column 0 for 1st dim, # columns 2 and 3 for 2nd dim, # columns 0,1,2 and 3 for 3rd dim. #def subarray(a,idxlist,n=len(a.shape)-1) : def subarray(a,idxlist,n=None) : if n is None: n = len(a.shape)-1 sa = a[tuple(slice(x) for x in a.shape[:n]) + (idxlist[n],)] return subarray(sa,idxlist, n-1) if n > 0 else sa