################################################################################ # # TRIQS: a Toolbox for Research in Interacting Quantum Systems # # Copyright (C) 2011 by M. Aichhorn # # TRIQS is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # TRIQS. If not, see . # ################################################################################ from pytriqs.cmake_info import hdf5_command_path import pytriqs.utility.mpi as mpi class ConverterTools: def read_fortran_file(self,filename,to_replace): """ Returns a generator that yields all numbers in the Fortran file as float, with possible replacements. Parameters ---------- filename : string Name of Fortran-produced file. to_replace : dict of str:str Dictionary defining old_char:new_char. Yields ------ string The next number in file. """ import os.path import string if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename for line in open(filename,'r') : for old,new in to_replace.iteritems(): line = line.replace(old,new) for x in line.split(): yield string.atof(x) def repack(self): """ Calls the h5repack routine in order to reduce the file size of the hdf5 archive. Note ---- Should only be used before the first invokation of HDFArchive in the program, otherwise the hdf5 linking will be broken. """ import subprocess if not (mpi.is_master_node()): return mpi.report("Repacking the file %s"%self.hdf_file) retcode = subprocess.call([hdf5_command_path+"/h5repack","-i%s"%self.hdf_file,"-otemphgfrt.h5"]) if retcode != 0: mpi.report("h5repack failed!") else: subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file]) def det_shell_equivalence(self,corr_shells): """ Determine the equivalence of correlated shells. Parameters ---------- corr_shells : list of dicts See documentation of necessary hdf5 elements. Returns ------- n_inequiv_shells : integer Number of inequivalent shells. corr_to_inequiv : list Mapping between correlated shell index and inequivalent shell index. corr_to_inequiv(i_corr_shells) = i_inequiv_shells inequiv_to_corr : list Mapping between inequivalent shell index and correlated shell index. inequiv_to_corr(i_inequiv_shells) = i_corr_shells Note ---- This is needed to set the self energies of all equivalent shells and to extract G_loc. """ corr_to_inequiv = [0 for i in range(len(corr_shells))] inequiv_to_corr = [0] n_inequiv_shells = 1 if len(corr_shells) > 1: inequiv_sort = [ corr_shells[0]['sort'] ] inequiv_l = [ corr_shells[0]['l'] ] for i in range(len(corr_shells)-1): is_equiv = False for j in range(n_inequiv_shells): if (inequiv_sort[j]==corr_shells[i+1]['sort']) and (inequiv_l[j]==corr_shells[i+1]['l']): is_equiv = True corr_to_inequiv[i+1] = j if is_equiv==False: corr_to_inequiv[i+1] = n_inequiv_shells n_inequiv_shells += 1 inequiv_sort.append( corr_shells[i+1]['sort'] ) inequiv_l.append( corr_shells[i+1]['l'] ) inequiv_to_corr.append( i+1 ) return n_inequiv_shells, corr_to_inequiv, inequiv_to_corr