/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_MATSUBARA_TIME_H #define TRIQS_GF_MATSUBARA_TIME_H #include "./tools.hpp" #include "./gf.hpp" #include "./local/tail.hpp" #include "./local/no_tail.hpp" #include "./domains/matsubara.hpp" #include "./meshes/linear.hpp" #include "./evaluators.hpp" namespace triqs { namespace gfs { struct imtime {}; // gf_mesh type and its factories template struct gf_mesh : linear_mesh> { typedef linear_mesh> B; gf_mesh() = default; gf_mesh(B const &x) : B(x) {} // enables also construction from another Opt gf_mesh(typename B::domain_t d, int n_time_slices, mesh_kind mk = half_bins) : B(d, 0, d.beta, n_time_slices, mk) {} gf_mesh(double beta, statistic_enum S, int n_time_slices, mesh_kind mk = half_bins) : gf_mesh({beta, S}, n_time_slices, mk) {} }; namespace gfs_implementation { // singularity. If no_tail is given, then it is the default (nothing) template<> struct singularity { typedef local::tail type;}; template<> struct singularity { typedef local::tail type;}; // h5 name template struct h5_name { static std::string invoke(){ return "ImTime";}}; /// --------------------------- data access --------------------------------- template struct data_proxy : data_proxy_array {}; template struct data_proxy : data_proxy_array {}; /// --------------------------- closest mesh point on the grid --------------------------------- template struct get_closest_point { // index_t is int template static int invoke(G const * g, closest_pt_wrap const & p) { double x = (g->mesh().kind()==half_bins ? double(p.value) : double(p.value)+ 0.5*g->mesh().delta()); int n = std::floor(x/g->mesh().delta()); return n; } }; /// --------------------------- evaluator --------------------------------- // this one is specific because of the beta-antiperiodicity for fermions template<> struct evaluator_fnt_on_mesh { double w1, w2; long n; evaluator_fnt_on_mesh() = default; evaluator_fnt_on_mesh (gf_mesh const & m, double tau) { double beta = m.domain().beta; int p = std::floor(tau/beta); tau -= p*beta; double w; bool in; std::tie(in, n, w) = windowing(m,tau); if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds"; if ((m.domain().statistic == Fermion) && (p%2==1)) {w2 = -w; w1 = w-1;} else { w2 = w; w1 = 1-w;} } template auto operator()(F const & f) const DECL_AND_RETURN(w1 * f(n) + w2 * f (n+1)); }; // now evaluator template struct evaluator : evaluator_one_var{}; } // gfs_implementation. }} #endif