# Import the Green's functions from pytriqs.gf.local import GfImFreq, iOmega_n, inverse # Create the Matsubara-frequency Green's function and initialize it g = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp") g <<= inverse( iOmega_n + 0.5 ) import pytriqs.utility.mpi as mpi mpi.bcast(g) #Block from pytriqs.gf.local import * g1 = GfImFreq(indices = ['eg1','eg2'], beta = 50, n_points = 1000, name = "egBlock") g2 = GfImFreq(indices = ['t2g1','t2g2','t2g3'], beta = 50, n_points = 1000, name = "t2gBlock") G = BlockGf(name_list = ('eg','t2g'), block_list = (g1,g2), make_copies = False) mpi.bcast(G) #imtime from pytriqs.gf.local import * # A Green's function on the Matsubara axis set to a semicircular gw = GfImFreq(indices = [1], beta = 50) gw <<= SemiCircular(half_bandwidth = 1) # Create an imaginary-time Green's function and plot it gt = GfImTime(indices = [1], beta = 50) gt <<= InverseFourier(gw) mpi.bcast(gt) ## gt2 = GfImTime(indices = [1], beta = 50) gt2 = mpi.bcast(gt2) print gt2.tail.order_max print gt2.tail.order_min gw2 = GfImFreq(indices = [1], beta = 50) gw2 <<= Fourier(gt2)