################################################################################ # # TRIQS: a Toolbox for Research in Interacting Quantum Systems # # Copyright (C) 2011 by M. Ferrero, O. Parcollet # # TRIQS is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # TRIQS. If not, see <http://www.gnu.org/licenses/>. # ################################################################################ r""" """ import numpy from math import * from gf import MeshImFreq, MeshReFreq from lazy_expressions import LazyExprTerminal, LazyExpr, transform def is_lazy(y): #return type(y) in [ Omega_, LazyExpr] return isinstance(y,(Omega_, LazyExpr, LazyExprTerminal)) def is_scalar(x): return type(x) in [ type(1), type(1.0), type(1j), numpy.ndarray, numpy.int, numpy.int_, numpy.int8, numpy.int16, numpy.int32, numpy.float, numpy.float_, numpy.float32, numpy.float64, numpy.complex, numpy.complex_, numpy.complex64, numpy.complex128 ] def convert_scalar_to_const(expr): # if the expression is a pure scalar, replace it by Const t= expr.get_terminal() if is_scalar(t): return LazyExpr( Const(t) ) # otherwise: replace all scalar appearing in +/- operations by Const def act (tag, childs): if tag in ["+", "-"]: for n,c in enumerate(childs): t = c.get_terminal() if is_scalar(t): childs[n] = Const (t) return (tag,childs) return transform(expr, act) ######################################################################### class Base (LazyExprTerminal): def __init__(self,**kargs): self.__dict__.update(kargs) ######################################################################### class Function (Base): r""" Stores a python function and a tail. If the Green's function is defined on an array of points :math:`x_i`, then it will be initialized to :math:`F(x_i)`. """ def __init__ (self, function, tail=None): r""" :param function: the function :math:`\omega \rightarrow function(\omega)` :param tail: The tail. Use None if you do not wish to use a tail (will be put to 0) """ Base.__init__(self, function=function, tail=tail) def __call__(self,G): if not(callable(self.function)): raise RuntimeError, "GFInitializer.Function: f must be callable" res = G.data[:,:,:] try: for n,om in enumerate(G.mesh): res[n,:,:] = self.function(om) except: print "The given function has a problem..." raise if self.tail: G.tail.copy_from(self.tail) return G ######################################################################### class Const(Base): def __init__ (self, C): Base.__init__(self, C=C) def __call__(self,G): C = self.C if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']: raise TypeError, "This initializer is only correct in frequency" if not isinstance(C,numpy.ndarray): assert G.N1==G.N2, "Const only applies to square G" C = C*numpy.identity(G.N1) if C.shape !=(G.N1,G.N2): raise RuntimeError, "Size of constant incorrect" G.tail.zero() G.tail[0][:,:] = C Function(lambda om: C, None)(G) return G ######################################################################### class Omega_(Base): r"""The function:math:`\omega \rightarrow \omega` """ def __str__(self): return "Omega" def __call__(self,G): if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']: raise TypeError, "This initializer is only correct in frequency" Id = numpy.identity(G.N1) G.tail.zero() G.tail[-1][:,:] = Id for n,om in enumerate(G.mesh): G.data[n,:,:] = om*Id return G ########################################################################## Omega = Omega_() iOmega_n = Omega_() ########################################################################## class A_Omega_Plus_B(Base): "deprecated. do not use" def __init__ (self, A=1, B=0, Invert= False): Base.__init__(self, A=A, B=B,Invert=Invert) def __call__(self,G): A,B = self.A, self.B if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']: raise TypeError, "This initializer is only correct in frequency" if not isinstance(A,numpy.ndarray): A = A*numpy.identity(G.N1) if not isinstance(B,numpy.ndarray): B = B*numpy.identity(G.N1) if A.shape !=(G.N1,G.N2): raise RuntimeError, "Size of A incorrect" if B.shape !=(G.N1,G.N2): raise RuntimeError, "Size of B incorrect" G.tail.zero() G.tail[-1][:,:] = A G.tail[0][:,:] = B Function(lambda om: A*om + B, None)(G) if self.Invert: G.invert() return G ####################################### class OneFermionInTime(Base): def __init__ (self, l =0): Base.__init__(self, L=l) def __call__(self,G): L = self.L if G.mesh.TypeGF not in [GF_Type.Imaginary_Time]: raise TypeError, "This initializer is only correct in frequency" Id = numpy.identity(G.N1) G.tail.zero() G.tail[1][:,:] = 1*Id G.tail[2][:,:] = L*Id G.tail[3][:,:] = L*L*Id G.tail.mask.fill(3) fact = -1/(1+exp(-L*G.beta)) Function(lambda t: fact* exp(-L*t) *Id, None)(G) return G ################################################## def _SemiCircularDOS(half_bandwidth): """ Semi_Circular DOS function Input: the 1/2 bandwidth Returns: a function omega-> dos(omega) """ from math import sqrt,pi larg = half_bandwidth def semi(x): if (abs(x)<larg): return sqrt( 1 - (x/larg)**2 )*2/pi/larg else: return 0.0 return semi def semi(x): return _SemiCircularDOS(x) ################################################## class SemiCircular (Base): r"""Hilbert transform of a semicircular density of states, i.e. .. math:: g(z) = \int \frac{A(\omega)}{z-\omega} d\omega where :math:`A(\omega) = \theta( D - |\omega|) 2 \sqrt{ D^2 - \omega^2}/(\pi D^2)`. (Only works in combination with frequency Green's functions.) """ def __init__ (self, half_bandwidth): """:param half_bandwidth: :math:`D`, the half bandwidth of the semicircular density of states""" Base.__init__(self, half_bandwidth=half_bandwidth) def __str__(self): return "SemiCircular(%s)"%self.half_bandwidth def __call__(self,G): D= self.half_bandwidth Id = numpy.identity(G.N1,numpy.complex_) if type(G.mesh) == MeshImFreq: f = lambda om: (om - 1j*copysign(1,om.imag)*sqrt(abs(om)**2 + D*D))/D/D*2*Id elif type(G.mesh) == MeshReFreq: def f(om_): om = om_.real if (om > -D) and (om < D): return (2.0/D**2) * (om - 1j* sqrt(D**2 - om**2)) else: return (2.0/D**2) * (om - copysign(1,om) * sqrt(om**2 - D**2)) else: raise TypeError, "This initializer is only correct in frequency" # Let's create a new tail Id = numpy.identity(G.N1) G.tail.zero() G.tail[1][:,:] = 1.0*Id G.tail[3][:,:] = D**2/4.0*Id G.tail[5][:,:] = D**4/8.0*Id G.tail.mask.fill(6) Function(f,None)(G) return G ################################################## class Wilson (Base): r"""The Hilbert transform of a flat density of states, with cut-off .. math:: g(z) = \int \frac{A(\omega)}{z-\omega} d\omega where :math:`A(\omega) = \theta( D^2 - \omega^2)/(2D)`. (Only works in combination with frequency Green's functions.) """ def __init__ (self, half_bandwidth): """:param half_bandwidth: :math:`D`, the half bandwidth """ Base.__init__(self, half_bandwidth=half_bandwidth) def __str__(self): return "Wilson(%s)"%half_bandwidth def __call__(self,G): D = self.half_bandwidth Id = numpy.identity(G.N1,numpy.complex_) if type(G.mesh) == MeshImFreq: f = lambda om: (-1/(2.0*D)) * numpy.log((om-D)/(om+D)) * Id elif type(G.mesh) == MeshReFreq: def f(om): if (om.real > -D) and (om.real < D): return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D) - 1j*pi*Id/(2*D) else: return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D) else: raise TypeError, "This initializer is only correct in frequency" # Let's create a new tail Id = numpy.identity(G.N1) G.tail.zero() G.tail[1][:,:] = 1.0*Id G.tail[3][:,:] = D**2/3.0*Id G.tail[5][:,:] = D**4/5.0*Id G.tail.mask.fill(6) Function(f,None)(G) return G ################################################## class Fourier (Base): r""" The Fourier transform as a lazy expression """ def __init__ (self, G): """:param G: :math:`G`, the function to be transformed. Must in the time domain""" Base.__init__(self, G = G) def __str__(self): return "Fourier(%s)"%self.G.name def __call__(self,G2): G2.set_from_fourier(self.G) return G2 class InverseFourier (Base): r""" The Inverse Fourier transform as a lazy expression """ def __init__ (self, G): """:param G: :math:`G`, the function to be transformed. Must in the frequency domain""" Base.__init__(self, G = G) def __str__(self): return "InverseFourier(%s)"%self.G.name def __call__(self,G2): G2.set_from_inverse_fourier(self.G) return G2 class LegendreToMatsubara (Base): r""" The transformation from Legendre to Matsubara as a lazy expression """ def __init__ (self, G): """:param G: :math:`G`, the function to be transformed. Must in the Legendre domain""" Base.__init__(self, G = G) def __str__(self): return "LegendreToMatsubara(%s)"%self.G.name def __call__(self,G2): G2.set_from_legendre(self.G) return G2 class MatsubaraToLegendre (Base): r""" The transformation from Legendre to Matsubara as a lazy expression """ def __init__ (self, G): """:param G: :math:`G`, the function to be transformed. Must in the Matsubara domain""" Base.__init__(self, G = G) def __str__(self): return "MatsubaraToLegendre(%s)"%self.G.name def __call__(self,G2): G2.set_from_imfreq(self.G) return G2