.. highlight:: c .. _gf_tail: High frequency tail =========================== Definition ---------------------- The tail of a Green's function is defined as the behavior of the Green's function :math:`G` at large Matsubara frequencies, namely .. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots Generically, the tail is parametrized by matrix-valued coefficients :math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ ) .. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i} Implementation -------------- In TRIQS, the tail is implemented as an object ``tail``. Here is a simple example of use: .. triqs_example:: ./tail_0.cpp Fitting the tail of a Green's function --------------------------------------- Given an imaginary-frequency Green's function, one can compute the moments of its high-frequency tail with the function ``fit_tail``: .. triqs_example:: ./tail_1.cpp The full documentation of ``fit_tail`` is :doc:`here`. API **** Here are the main methods of the ``tail`` class: +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | Member | Description | Type | +=================================+=========================================================================================+==========================+ | data() | 3-dim array of the coefficients: ``data(i,n,m)`` :math:`=(\mathbf{a}_{i+o_{min}})_{nm}` | data_view_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | mask_view() | 2-dim (:math:`N_1 \times N_2`) array of the maximum non-zero indices | mask_view_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | order_min() | minimum order | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | order_max() | maximum order | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | size() | first dim of data() | size_t | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | shape() | shape of data() | shape_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | smallest_nonzeros() | order of the smallest_nonzero coefficient | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | is_decreasing_at_infinity() | true if the tail is decreasing at infinity | bool | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | operator() (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | mv_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | get_or_zero (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | const_mv_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | evaluate(dcomplex const &omega) | value of the tail at frequency omega | arrays::matrix | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ The tail is DefaultConstructible, H5Serializable and BoostSerializable.