/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./product.hpp"
#include "./meshes/matsubara_freq.hpp"
namespace triqs {
namespace gfs {
DEAD CODE
struct matrix_operations {};
// in this version, we store all frequencies, to be able to write matrix operation simply.
// memory usage is x2 too large in principle.
// short cut. Here only the change compare to default multi var implementation
using imfreq_x2 = cartesian_product;
// reimplement a simpler constructor, which enforces that the 2 meshes are equal.
template struct gf_mesh : mesh_product {
using B = mesh_product;
gf_mesh() = default;
gf_mesh(matsubara_freq_mesh const& m) : B{m, m} {}
//gf_mesh(matsubara_freq_mesh const & m1, matsubara_freq_mesh const& m2) : B{m1,m2} {} //needed for curry. DO NOT document.
template
gf_mesh(T&&... x)
: B{matsubara_freq_mesh(std::forward(x)...), matsubara_freq_mesh(std::forward(x)...)} {}
};
// The default target for this mesh
template <> struct gf_default_target {
using type = tensor_valued<4>;
};
namespace gfs_implementation {
/// --------------------------- data access ---------------------------------
struct imfreq_x2_indices_mixer {
template static auto invoke(MI const& m, TI const& t) {
return std::make_tuple(std::get<0>(m), std::get<0>(t), std::get<1>(t), std::get<1>(m), std::get<2>(t), std::get<3>(t));
}
};
template <>
struct data_proxy, void> : data_proxy_array_index_mixer, 2, 4,
imfreq_x2_indices_mixer> {
//template auto operator()(S& data, Tu const& tu) const {
// return data(std::get<0>(tu), arrays::range(), std::get<1>(tu), arrays::range(), std::get<2>(tu), arrays::range());
// }
};
/*
// Change the ordering of the indices in the array to allow matrix operations
template struct data_proxy, Opt> : data_proxy_array_common, 6> {
template static utility::mini_vector join_shape(S1 const& s1, S2 const& s2) {
return {int(s1[0]), s2[0], int(s1[1]), s2[1]};
// TODO : clean this size_t....
}
template
AUTO_DECL operator()(S& data, Tu const& tu) const
RETURN(make_matrix_view(data(std::get<0>(tu), arrays::range(), std::get<1>(tu), arrays::range())));
};
*/
} // gfs_implementation
/// --------------------------- inverse ---------------------------------
// the generic inverse is fine. We only need to redo the invert_in_place.
template void invert_in_place(gf_view g) {
auto arr = make_matrix_view(group_indices_view(g.data(), {0, 1, 2}, {3, 4, 5})); // a view of the array properly regrouped
arr = inverse(arr); // inverse as a big matrix (nu,n) x (nu', n')
// no singularity
}
}
}