/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see <http://www.gnu.org/licenses/>. * ******************************************************************************/ #ifndef TRIQS_GF_MESH_PRODUCT_H #define TRIQS_GF_MESH_PRODUCT_H #include "./mesh_tools.hpp" #include "../domains/product.hpp" #include <triqs/utility/tuple_tools.hpp> #include <triqs/utility/mini_vector.hpp> namespace triqs { namespace gfs { template<typename... Meshes> struct mesh_product : tag::composite { typedef domain_product<typename Meshes::domain_t ... > domain_t; typedef std::tuple<typename Meshes::index_t ... > index_t; typedef std::tuple<Meshes...> m_tuple_t; typedef std::tuple<typename Meshes::mesh_point_t ...> m_pt_tuple_t; typedef typename domain_t::point_t domain_pt_t; static constexpr int dim = sizeof...(Meshes); mesh_product () {} mesh_product (Meshes const & ... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {} domain_t const & domain() const { return _dom;} m_tuple_t const & components() const { return m_tuple;} m_tuple_t & components() { return m_tuple;} /// size of the mesh is the product of size struct _aux0 { template<typename M> size_t operator()(M const & m, size_t R) { return R*m.size();}}; size_t size() const { return triqs::tuple::fold(_aux0(), m_tuple, 1);} /// Conversions point <-> index <-> linear_index struct _aux1 { template<typename P, typename M, typename I> void operator()(P & p, M const & m, I const& i) {p = m.index_to_point(i);}}; typename domain_t::point_t index_to_point(index_t const & ind) const { domain_pt_t res; triqs::tuple::apply_on_zip(_aux1(), res,m_tuple,ind); return res;} // index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....)) struct _aux2 { template<typename I, typename M> size_t operator()(M const & m, I const & i,size_t R) {return m.index_to_linear(i) + R * m.size();}}; size_t index_to_linear(index_t const & ii) const { return triqs::tuple::fold_on_zip(_aux2(), m_tuple, ii, size_t(0)); } // Same but a tuple of mesh_point_t struct _aux3 { template<typename P, typename M> size_t operator()(M const & m, P const & p,size_t R) {return p.linear_index() + R * m.size();}}; size_t mp_to_linear(m_pt_tuple_t const & mp) const { return triqs::tuple::fold_on_zip(_aux3(), m_tuple, mp, size_t(0)); } // struct _aux4 { template< typename M, typename V> V * operator()(M const & m, V * v) {*v = m.size(); return ++v;}}; utility::mini_vector<size_t,dim> all_size_as_mini_vector () const { utility::mini_vector<size_t,dim> res; triqs::tuple::fold(_aux4(), m_tuple, &res[0] ); return res; } // Same but a variadic list of mesh_point_t template<typename ... MP> size_t mesh_pt_components_to_linear(MP const & ... mp) const { static_assert(std::is_same< std::tuple<MP...>, m_pt_tuple_t>::value, "Call incorrect "); //static_assert(std::is_same< std::tuple<typename std::remove_cv<typename std::remove_reference<MP>::type>::type...>, m_pt_tuple_t>::value, "Call incorrect "); return mp_to_linear(std::forward_as_tuple(mp...)); } // speed test ? or make a variadic fold... /// The wrapper for the mesh point class mesh_point_t : tag::mesh_point{ const mesh_product * m; m_pt_tuple_t _c; bool _atend; struct F2 { template<typename M> typename M::mesh_point_t operator()(M const & m, typename M::index_t const & i) const { return m[i];}}; struct F1 { template<typename M> typename M::mesh_point_t operator()(M const & m) const { return m[typename M::index_t()];}}; public : mesh_point_t(mesh_product const & m_, index_t index_ ) : m(&m_), _c (triqs::tuple::apply_on_zip(F2(), m_.m_tuple, index_)), _atend(false) {} mesh_point_t(mesh_product const & m_) : m(&m_), _c (triqs::tuple::apply(F1(), m_.m_tuple)), _atend(false) {} m_pt_tuple_t const & components_tuple() const { return _c;} size_t linear_index() const { return m->mp_to_linear(_c);} const mesh_product * mesh() const { return m;} typedef domain_pt_t cast_t; operator cast_t() const { return m->index_to_point(index);} // index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim struct _aux1 { template<typename P> bool operator()(P & p, bool done) {if (done) return true; p.advance(); if (p.at_end()) {p.reset(); return false;} return true;} }; void advance() { triqs::tuple::fold(_aux1(), _c, false);} //index_t index() const { return _index;} // not implemented yet bool at_end() const { return _atend;} struct _aux{ template<typename M> size_t operator()(M & m,size_t ) { m.reset(); return 0;}}; void reset() { _atend = false; triqs::tuple::fold(_aux(), _c,0);} };// end mesh_point_t /// Accessing a point of the mesh mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i);} mesh_point_t operator()(typename Meshes::index_t ... i) const { return (*this)[std::make_tuple(i...)];} /// Iterating on all the points... typedef mesh_pt_generator<mesh_product> const_iterator; const_iterator begin() const { return const_iterator (this);} const_iterator end() const { return const_iterator (this, true);} const_iterator cbegin() const { return const_iterator (this);} const_iterator cend() const { return const_iterator (this, true);} /// Mesh comparison friend bool operator == (mesh_product const & M1, mesh_product const & M2) { return M1.m_tuple==M2.m_tuple; } /// Write into HDF5 struct _auxh5w { h5::group gr; _auxh5w( h5::group gr_) : gr(gr_) {} //icc has yet another bug on new initialization form with {}... template<typename M> size_t operator()(M const & m, size_t N) { std::stringstream fs;fs <<"MeshComponent"<< N; h5_write(gr,fs.str(), m); return N+1; } }; friend void h5_write (h5::group fg, std::string subgroup_name, mesh_product const & m) { h5::group gr = fg.create_group(subgroup_name); //h5_write(gr,"domain",m.domain()); triqs::tuple::fold(_auxh5w(gr), m.components(), size_t(0)); } /// Read from HDF5 struct _auxh5r { h5::group gr;_auxh5r( h5::group gr_) : gr(gr_) {} template<typename M> size_t operator()(M & m, size_t N) { std::stringstream fs;fs <<"MeshComponent"<< N; h5_read(gr,fs.str(), m); return N+1; } }; friend void h5_read (h5::group fg, std::string subgroup_name, mesh_product & m){ h5::group gr = fg.open_group(subgroup_name); //h5_read(gr,"domain",m._dom); triqs::tuple::fold(_auxh5r(gr), m.components(), size_t(0)); } // BOOST Serialization friend class boost::serialization::access; template<typename Archive> struct _aux_ser { Archive & ar;_aux_ser( Archive & ar_) : ar(ar_) {} template<typename M> size_t operator()(M & m, size_t N) { std::stringstream fs;fs <<"MeshComponent"<< N; ar & boost::serialization::make_nvp(fs.str().c_str(),m); return N+1; } }; template<class Archive> void serialize(Archive & ar, const unsigned int version) { triqs::tuple::fold(_aux_ser<Archive>(ar), m_tuple, size_t(0)); } private: m_tuple_t m_tuple; domain_t _dom; }; //template<int pos, typename ... M> //typename std::tuple_element<pos,typename mesh_product<M...>::index_t>::type get_index1(typename mesh_product<M...>::mesh_point_t const & p) { return std::get<pos>(p.components_tuple());} template<int pos, typename P> auto get_index(P const & p) DECL_AND_RETURN( std::get<pos>(p.components_tuple()).index()); template<int pos, typename P> auto get_point(P const & p) DECL_AND_RETURN( std::get<pos>( p.mesh()->components() ).index_to_point( std::get<pos>(p.components_tuple()).index() ) ); template<int pos, typename P> auto get_component(P const & p) DECL_AND_RETURN( std::get<pos>(p.components_tuple())); // C++14 //auto get_point(P const & p) { return std::get<pos> (p.mesh()->components()).index_to_point( std::get<pos>(p.components_tuple()));} // Given a composite mesh m , and a linear array of storage A // reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array // with indices egal to the indices of the components of the mesh. // Very useful for slicing, currying functions. template<typename ... Meshes, typename T, ull_t OptionsFlags > arrays::array_view<T, sizeof...(Meshes),OptionsFlags, arrays::indexmaps::mem_layout::fortran_order(sizeof...(Meshes)) > reinterpret_linear_array(mesh_product<Meshes...> const & m, arrays::array_view<T,1,OptionsFlags> const & A) { static int constexpr rank = sizeof...(Meshes); typedef arrays::array_view<T, sizeof...(Meshes),OptionsFlags, arrays::indexmaps::mem_layout::fortran_order(rank)> return_t; typedef typename return_t::indexmap_type im_t; auto l = m.all_size_as_mini_vector(); typename im_t::strides_type sv; std::ptrdiff_t s= 1; for (int u=0; u<rank; ++u) { sv[u] = s; s *= l[u];} // fortran type folding return return_t (im_t (l,sv,0) , A.storage()); } }} #endif