/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_GF_LOCAL_FOURIER_REAL_H
#define TRIQS_GF_LOCAL_FOURIER_REAL_H
#include "fourier_base.hpp"
#include
#include
namespace triqs { namespace gfs {
// First the implementation of the fourier transform
void fourier_impl (gf_view gw , gf_const_view gt, scalar_valued);
void fourier_impl (gf_view gw , gf_const_view gt, matrix_valued);
void inverse_fourier_impl (gf_view gt, gf_const_view gw, scalar_valued);
void inverse_fourier_impl (gf_view gt, gf_const_view gw, matrix_valued);
inline gf_view fourier (gf_const_view gt) {
double pi = std::acos(-1);
int L = gt.mesh().size();
double wmin = -pi * (L-1) / (L*gt.mesh().delta());
double wmax = pi * (L-1) / (L*gt.mesh().delta());
auto gw = gf{ {wmin, wmax, L}, gt.data().shape().front_pop()};
auto V = gw();
fourier_impl(V, gt, matrix_valued());
return gw;
}
inline gf_view fourier (gf_const_view gt) {
double pi = std::acos(-1);
int L = gt.mesh().size();
double wmin = -pi * (L-1) / (L*gt.mesh().delta());
double wmax = pi * (L-1) / (L*gt.mesh().delta());
auto gw = gf{ {wmin, wmax, L} };
auto V = gw();
fourier_impl(V, gt, scalar_valued());
return gw;
}
inline gf_view inverse_fourier (gf_const_view gw) {
double pi = std::acos(-1);
int L = gw.mesh().size();
double tmin = -pi * (L-1) / (L*gw.mesh().delta());
double tmax = pi * (L-1) / (L*gw.mesh().delta());
auto gt = gf{{ tmin, tmax, L} , gw.data().shape().front_pop()};
auto V = gt();
inverse_fourier_impl(V, gw, matrix_valued());
return gt;
}
inline gf_view inverse_fourier (gf_const_view gw) {
double pi = std::acos(-1);
int L = gw.mesh().size();
double tmin = -pi * (L-1) / (L*gw.mesh().delta());
double tmax = pi * (L-1) / (L*gw.mesh().delta());
auto gt = gf{ {tmin, tmax, L} };
auto V = gt();
inverse_fourier_impl(V, gw, scalar_valued());
return gt;
}
inline gf_keeper lazy_fourier(gf_const_view g) { return {g}; }
inline gf_keeper lazy_inverse_fourier(gf_const_view g) { return {g}; }
inline gf_keeper lazy_fourier(gf_const_view g) { return {g}; }
inline gf_keeper lazy_inverse_fourier(gf_const_view g) { return {g}; }
void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L);
void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L);
void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L);
void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L);
}}
#endif