/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2011 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_LOCAL_FOURIER_REAL_H #define TRIQS_GF_LOCAL_FOURIER_REAL_H #include "fourier_base.hpp" #include #include namespace triqs { namespace gfs { // First the implementation of the fourier transform void fourier_impl (gf_view gw , gf_const_view gt, scalar_valued); void fourier_impl (gf_view gw , gf_const_view gt, matrix_valued); void inverse_fourier_impl (gf_view gt, gf_const_view gw, scalar_valued); void inverse_fourier_impl (gf_view gt, gf_const_view gw, matrix_valued); inline gf_view fourier (gf_const_view gt) { double pi = std::acos(-1); int L = gt.mesh().size(); double wmin = -pi * (L-1) / (L*gt.mesh().delta()); double wmax = pi * (L-1) / (L*gt.mesh().delta()); auto gw = gf{ {wmin, wmax, L}, gt.data().shape().front_pop()}; auto V = gw(); fourier_impl(V, gt, matrix_valued()); return gw; } inline gf_view fourier (gf_const_view gt) { double pi = std::acos(-1); int L = gt.mesh().size(); double wmin = -pi * (L-1) / (L*gt.mesh().delta()); double wmax = pi * (L-1) / (L*gt.mesh().delta()); auto gw = gf{ {wmin, wmax, L} }; auto V = gw(); fourier_impl(V, gt, scalar_valued()); return gw; } inline gf_view inverse_fourier (gf_const_view gw) { double pi = std::acos(-1); int L = gw.mesh().size(); double tmin = -pi * (L-1) / (L*gw.mesh().delta()); double tmax = pi * (L-1) / (L*gw.mesh().delta()); auto gt = gf{{ tmin, tmax, L} , gw.data().shape().front_pop()}; auto V = gt(); inverse_fourier_impl(V, gw, matrix_valued()); return gt; } inline gf_view inverse_fourier (gf_const_view gw) { double pi = std::acos(-1); int L = gw.mesh().size(); double tmin = -pi * (L-1) / (L*gw.mesh().delta()); double tmax = pi * (L-1) / (L*gw.mesh().delta()); auto gt = gf{ {tmin, tmax, L} }; auto V = gt(); inverse_fourier_impl(V, gw, scalar_valued()); return gt; } inline gf_keeper lazy_fourier(gf_const_view g) { return {g}; } inline gf_keeper lazy_inverse_fourier(gf_const_view g) { return {g}; } inline gf_keeper lazy_fourier(gf_const_view g) { return {g}; } inline gf_keeper lazy_inverse_fourier(gf_const_view g) { return {g}; } void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L); void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L); void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L); void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L); }} #endif