/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012-2013 by O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #pragma once #include "./mesh_tools.hpp" #include "../domains/product.hpp" #include #include #include namespace triqs { namespace gfs { /** Cartesian product of meshes */ template struct mesh_product : tag::composite { using domain_t = domain_product; using index_t = std::c14::tuple; using m_tuple_t = std::tuple; using m_pt_tuple_t = std::tuple; using domain_pt_t = typename domain_t::point_t; static constexpr int dim = sizeof...(Meshes); mesh_product() {} mesh_product(Meshes const &... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {} domain_t const &domain() const { return _dom; } m_tuple_t const &components() const { return m_tuple; } m_tuple_t &components() { return m_tuple; } private: struct _aux0 { template size_t operator()(M const &m, size_t R) { return R * m.size(); } }; public: /// size of the mesh is the product of size size_t size() const { return triqs::tuple::fold(_aux0(), m_tuple, 1); } private: struct _aux1 { template void operator()(P &p, M const &m, I const &i) { p = m.index_to_point(i); } }; public: /// Conversions point <-> index <-> linear_index typename domain_t::point_t index_to_point(index_t const &ind) const { domain_pt_t res; triqs::tuple::apply_on_zip(_aux1(), res, m_tuple, ind); return res; } private: struct _aux2 { template size_t operator()(M const &m, I const &i, size_t R) { return m.index_to_linear(i) + R * m.size(); } }; public: /// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....)) size_t index_to_linear(index_t const &ii) const { return triqs::tuple::fold_on_zip(_aux2(), reverse(m_tuple), reverse(ii), size_t(0)); } // size_t index_to_linear(index_t const & ii) const { return triqs::tuple::fold_on_zip([](auto const &m, auto const &i, auto R) //{return m.index_to_linear(i) + R * m.size();} , m_tuple, ii, size_t(0)); } private: struct _aux3 { template size_t operator()(M const &m, P const &p, size_t R) { return p.linear_index() + R * m.size(); } }; public: /// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....)) size_t mp_to_linear(m_pt_tuple_t const &mp) const { return triqs::tuple::fold_on_zip(_aux3(), reverse(m_tuple), reverse(mp), size_t(0)); } // private: struct _aux4 { template V *operator()(M const &m, V *v) { *v = m.size(); return ++v; } }; public: utility::mini_vector shape() const { utility::mini_vector res; triqs::tuple::fold(_aux4(), m_tuple, &res[0]); return res; } // Same but a variadic list of mesh_point_t template size_t mesh_pt_components_to_linear(MP const &... mp) const { static_assert(std::is_same, m_pt_tuple_t>::value, "Call incorrect "); // static_assert(std::is_same< std::tuple::type>::type...>, // m_pt_tuple_t>::value, "Call incorrect "); return mp_to_linear(std::forward_as_tuple(mp...)); } // speed test ? or make a variadic fold... /// The wrapper for the mesh point class mesh_point_t : tag::mesh_point { const mesh_product *m; m_pt_tuple_t _c; bool _atend; struct F2 { template typename M::mesh_point_t operator()(M const &m, typename M::index_t const &i) const { return m[i]; } }; struct F1 { template typename M::mesh_point_t operator()(M const &m) const { return {m}; } }; public: mesh_point_t() = default; mesh_point_t(mesh_product const &m_, index_t index_) : m(&m_), _c(triqs::tuple::apply_on_zip(F2(), m_.m_tuple, index_)), _atend(false) {} mesh_point_t(mesh_product const &m_) : m(&m_), _c(triqs::tuple::apply_on_tuple(F1(), m_.m_tuple)), _atend(false) {} m_pt_tuple_t const &components_tuple() const { return _c; } size_t linear_index() const { return m->mp_to_linear(_c); } const mesh_product *mesh() const { return m; } using cast_t = domain_pt_t; operator cast_t() const { return m->index_to_point(index); } // index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim private: struct _aux1 { template bool operator()(P &p, bool done) { if (done) return true; p.advance(); if (!p.at_end()) return true; p.reset(); return false; } }; public: void advance() { triqs::tuple::fold(_aux1(), _c, false); } // index_t index() const { return _index;} // not implemented yet bool at_end() const { return _atend; } private: struct _aux { template size_t operator()(M &m, size_t) { m.reset(); return 0; } }; public: void reset() { _atend = false; triqs::tuple::fold(_aux(), _c, 0); } }; // end mesh_point_t /// Accessing a point of the mesh mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); } mesh_point_t operator()(typename Meshes::index_t... i) const { return (*this)[std::make_tuple(i...)]; } /// Iterating on all the points... using const_iterator = mesh_pt_generator; const_iterator begin() const { return const_iterator(this); } const_iterator end() const { return const_iterator(this, true); } const_iterator cbegin() const { return const_iterator(this); } const_iterator cend() const { return const_iterator(this, true); } /// Mesh comparison friend bool operator==(mesh_product const &M1, mesh_product const &M2) { return M1.m_tuple == M2.m_tuple; } private: /// Write into HDF5 struct _auxh5w { h5::group gr; _auxh5w(h5::group gr_) : gr(gr_) {} // icc has yet another bug on new initialization form with {}... template size_t operator()(M const &m, size_t N) { std::stringstream fs; fs << "MeshComponent" << N; h5_write(gr, fs.str(), m); return N + 1; } }; friend void h5_write(h5::group fg, std::string subgroup_name, mesh_product const &m) { h5::group gr = fg.create_group(subgroup_name); // h5_write(gr,"domain",m.domain()); triqs::tuple::fold(_auxh5w(gr), m.components(), size_t(0)); } /// Read from HDF5 struct _auxh5r { h5::group gr; _auxh5r(h5::group gr_) : gr(gr_) {} template size_t operator()(M &m, size_t N) { std::stringstream fs; fs << "MeshComponent" << N; h5_read(gr, fs.str(), m); return N + 1; } }; friend void h5_read(h5::group fg, std::string subgroup_name, mesh_product &m) { h5::group gr = fg.open_group(subgroup_name); // h5_read(gr,"domain",m._dom); triqs::tuple::fold(_auxh5r(gr), m.components(), size_t(0)); } // BOOST Serialization friend class boost::serialization::access; template struct _aux_ser { Archive &ar; _aux_ser(Archive &ar_) : ar(ar_) {} template size_t operator()(M &m, size_t N) { std::stringstream fs; fs << "MeshComponent" << N; ar &boost::serialization::make_nvp(fs.str().c_str(), m); return N + 1; } }; template void serialize(Archive &ar, const unsigned int version) { triqs::tuple::fold(_aux_ser(ar), m_tuple, size_t(0)); } friend std::ostream &operator<<(std::ostream &sout, mesh_product const &m) { return sout << "Product Mesh"; } private: m_tuple_t m_tuple; domain_t _dom; }; template auto get_index(P const &p) DECL_AND_RETURN(std::get(p.components_tuple()).index()); template auto get_point(P const &p) DECL_AND_RETURN(std::get(p.mesh() -> components()).index_to_point(std::get(p.components_tuple()).index())); template auto get_component(P const &p) DECL_AND_RETURN(std::get(p.components_tuple())); // Given a composite mesh m , and a linear array of storage A // reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array // with indices egal to the indices of the components of the mesh. // Very useful for slicing, currying functions. template arrays::array_view reinterpret_linear_array(mesh_product const &m, arrays::array_view A) { return {{join(m.shape(), get_shape(A).front_pop())}, A.storage()}; } } }