/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./local/no_tail.hpp"
#include "./domains/matsubara.hpp"
#include "./meshes/matsubara_time.hpp"
#include "./evaluators.hpp"
namespace triqs {
namespace gfs {
struct imtime {};
template struct gf_mesh : matsubara_time_mesh {
template gf_mesh(T &&... x) : matsubara_time_mesh(std::forward(x)...) {}
// using matsubara_time_mesh::matsubara_time_mesh;
};
namespace gfs_implementation {
// singularity. If no_tail is given, then it is the default (nothing)
template <> struct singularity {
using type = local::tail;
};
template <> struct singularity {
using type = local::tail;
};
// h5 name
template struct h5_name {
static std::string invoke() { return "ImTime"; }
};
/// --------------------------- data access ---------------------------------
template struct data_proxy : data_proxy_array {};
template struct data_proxy : data_proxy_array {};
/// --------------------------- closest mesh point on the grid ---------------------------------
template struct get_closest_point {
// index_t is int
template static int invoke(G const *g, closest_pt_wrap const &p) {
double x = (g->mesh().kind() == half_bins ? double(p.value) : double(p.value) + 0.5 * g->mesh().delta());
int n = std::floor(x / g->mesh().delta());
return n;
}
};
/// --------------------------- evaluator ---------------------------------
// this one is specific because of the beta-antiperiodicity for fermions
template <> struct evaluator_fnt_on_mesh {
double w1, w2;
long n;
evaluator_fnt_on_mesh() = default;
evaluator_fnt_on_mesh(gf_mesh const &m, double tau) {
double beta = m.domain().beta;
int p = std::floor(tau / beta);
tau -= p * beta;
double w;
bool in;
std::tie(in, n, w) = windowing(m, tau);
if (!in) TRIQS_RUNTIME_ERROR << " Evaluation out of bounds";
if ((m.domain().statistic == Fermion) && (p % 2 != 0)) {
w2 = -w;
w1 = w - 1;
} else {
w2 = w;
w1 = 1 - w;
}
}
template auto operator()(F const &f) const DECL_AND_RETURN(w1 *f(n) + w2 *f(n + 1));
};
// now evaluator
template struct evaluator : evaluator_one_var {};
} // gfs_implementation.
}
}