/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012-2013 by O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #pragma once #include "./mesh_tools.hpp" #include "../domains/product.hpp" #include #include #include namespace triqs { namespace gfs { /** Cartesian product of meshes */ template struct mesh_product : tag::composite { using domain_t = domain_product; using index_t = std::c14::tuple; using m_tuple_t = std::tuple; using m_pt_tuple_t = std::tuple; using domain_pt_t = typename domain_t::point_t; static constexpr int dim = sizeof...(Meshes); mesh_product() {} mesh_product(Meshes const &... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {} domain_t const &domain() const { return _dom; } m_tuple_t const &components() const { return m_tuple; } m_tuple_t &components() { return m_tuple; } /// size of the mesh is the product of size size_t size() const { return triqs::tuple::fold([](auto const &m, size_t R) { return R * m.size(); }, m_tuple, 1); } /// Conversions point <-> index <-> linear_index typename domain_t::point_t index_to_point(index_t const &ind) const { domain_pt_t res; auto l = [](auto &p, auto const &m, auto const &i) { p = m.index_to_point(i); }; triqs::tuple::apply_on_zip(l, res, m_tuple, ind); return res; } /// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....)) size_t index_to_linear(index_t const &ii) const { auto l = [](auto const &m, auto const &i, size_t R) { return m.index_to_linear(i) + R * m.size(); }; return triqs::tuple::fold_on_zip(l,reverse(m_tuple), reverse(ii), size_t(0)); } /// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....)) size_t mp_to_linear(m_pt_tuple_t const &mp) const { auto l = [](auto const &m, auto const &p, size_t R) { return p.linear_index() + R * m.size(); }; return triqs::tuple::fold_on_zip(l, reverse(m_tuple), reverse(mp), size_t(0)); } utility::mini_vector shape() const { utility::mini_vector res; auto l = [&res](auto const &m, int i) mutable { res[i] = m.size(); }; triqs::tuple::for_each_enumerate(m_tuple, l); return res; } // Same but a variadic list of mesh_point_t template size_t mesh_pt_components_to_linear(MP const &... mp) const { static_assert(std::is_same, m_pt_tuple_t>::value, "Call incorrect "); // static_assert(std::is_same< std::tuple::type>::type...>, // m_pt_tuple_t>::value, "Call incorrect "); return mp_to_linear(std::forward_as_tuple(mp...)); } // speed test ? or make a variadic fold... /// The wrapper for the mesh point class mesh_point_t : tag::mesh_point { const mesh_product *m; m_pt_tuple_t _c; bool _atend; struct F1 { template typename M::mesh_point_t operator()(M const &m) const { return {m}; } }; public: mesh_point_t() = default; mesh_point_t(mesh_product const &m_, index_t index_) : m(&m_) , _c(triqs::tuple::apply_on_zip([](auto const & m, auto const & i) { return m[i]; }, m_.m_tuple, index_)) , _atend(false) {} mesh_point_t(mesh_product const &m_) : m(&m_), _c(triqs::tuple::apply_on_tuple(F1(), m_.m_tuple)), _atend(false) {} m_pt_tuple_t const &components_tuple() const { return _c; } size_t linear_index() const { return m->mp_to_linear(_c); } const mesh_product *mesh() const { return m; } using cast_t = domain_pt_t; operator cast_t() const { return m->index_to_point(index); } // index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim void advance() { auto l = [](auto &p, bool done) { if (done) return true; p.advance(); if (!p.at_end()) return true; p.reset(); return false; }; triqs::tuple::fold(l, _c, false); } // index_t index() const { return _index;} // not implemented yet bool at_end() const { return _atend; } void reset() { _atend = false; triqs::tuple::for_each(_c, [](auto &m) { m.reset(); }); } }; // end mesh_point_t /// Accessing a point of the mesh mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); } mesh_point_t operator()(typename Meshes::index_t... i) const { return (*this)[std::make_tuple(i...)]; } /// Iterating on all the points... using const_iterator = mesh_pt_generator; const_iterator begin() const { return const_iterator(this); } const_iterator end() const { return const_iterator(this, true); } const_iterator cbegin() const { return const_iterator(this); } const_iterator cend() const { return const_iterator(this, true); } /// Mesh comparison friend bool operator==(mesh_product const &M1, mesh_product const &M2) { return M1.m_tuple == M2.m_tuple; } /// Write into HDF5 friend void h5_write(h5::group fg, std::string subgroup_name, mesh_product const &m) { h5::group gr = fg.create_group(subgroup_name); auto l = [gr](auto const &m, int N) { h5_write(gr, "MeshComponent" + std::to_string(N), m); }; triqs::tuple::for_each_enumerate(m.components(), l); } /// Read from HDF5 friend void h5_read(h5::group fg, std::string subgroup_name, mesh_product &m) { h5::group gr = fg.open_group(subgroup_name); auto l = [gr](auto &m, int N) { h5_read(gr, "MeshComponent" + std::to_string(N), m); }; triqs::tuple::for_each_enumerate(m.components(), l); } /// BOOST Serialization friend class boost::serialization::access; template void serialize(Archive &ar, const unsigned int version) { auto l = [&ar](auto &m, int N) { ar &boost::serialization::make_nvp("MeshComponent" + std::to_string(N), m); }; triqs::tuple::for_each_enumerate(m_tuple, l); } friend std::ostream &operator<<(std::ostream &sout, mesh_product const &m) { return sout << "Product Mesh"; } private: m_tuple_t m_tuple; domain_t _dom; }; template decltype(auto) get_index(P const &p) {return std::get(p.components_tuple()).index();} template decltype(auto) get_point(P const &p) { return std::get(p.mesh()->components()).index_to_point(std::get(p.components_tuple()).index()); } template decltype(auto) get_component(P const &p) { return std::get(p.components_tuple()); } // Given a composite mesh m , and a linear array of storage A // reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array // with indices egal to the indices of the components of the mesh. // Very useful for slicing, currying functions. template arrays::array_view reinterpret_linear_array(mesh_product const &m, arrays::array_view A) { return {{join(m.shape(), get_shape(A).front_pop())}, A.storage()}; } } }