/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./mesh_tools.hpp"
#include "../domains/product.hpp"
#include
#include
#include
namespace triqs {
namespace gfs {
/** Cartesian product of meshes */
template struct mesh_product : tag::composite {
using domain_t = domain_product;
using index_t = std::c14::tuple;
using m_tuple_t = std::tuple;
using m_pt_tuple_t = std::tuple;
using domain_pt_t = typename domain_t::point_t;
static constexpr int dim = sizeof...(Meshes);
mesh_product() {}
mesh_product(Meshes const &... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {}
domain_t const &domain() const { return _dom; }
m_tuple_t const &components() const { return m_tuple; }
m_tuple_t &components() { return m_tuple; }
/// size of the mesh is the product of size
size_t size() const {
return triqs::tuple::fold([](auto const &m, size_t R) { return R * m.size(); }, m_tuple, 1);
}
/// Conversions point <-> index <-> linear_index
typename domain_t::point_t index_to_point(index_t const &ind) const {
domain_pt_t res;
auto l = [](auto &p, auto const &m, auto const &i) { p = m.index_to_point(i); };
triqs::tuple::apply_on_zip(l, res, m_tuple, ind);
return res;
}
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
size_t index_to_linear(index_t const &ii) const {
auto l = [](auto const &m, auto const &i, size_t R) { return m.index_to_linear(i) + R * m.size(); };
return triqs::tuple::fold_on_zip(l,reverse(m_tuple), reverse(ii), size_t(0));
}
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
size_t mp_to_linear(m_pt_tuple_t const &mp) const {
auto l = [](auto const &m, auto const &p, size_t R) { return p.linear_index() + R * m.size(); };
return triqs::tuple::fold_on_zip(l, reverse(m_tuple), reverse(mp), size_t(0));
}
utility::mini_vector shape() const {
utility::mini_vector res;
auto l = [&res](auto const &m, int i) mutable { res[i] = m.size(); };
triqs::tuple::for_each_enumerate(m_tuple, l);
return res;
}
// Same but a variadic list of mesh_point_t
template size_t mesh_pt_components_to_linear(MP const &... mp) const {
static_assert(std::is_same, m_pt_tuple_t>::value, "Call incorrect ");
// static_assert(std::is_same< std::tuple::type>::type...>,
// m_pt_tuple_t>::value, "Call incorrect ");
return mp_to_linear(std::forward_as_tuple(mp...));
} // speed test ? or make a variadic fold...
/// The wrapper for the mesh point
class mesh_point_t : tag::mesh_point {
const mesh_product *m;
m_pt_tuple_t _c;
bool _atend;
struct F1 {
template typename M::mesh_point_t operator()(M const &m) const { return {m}; }
};
public:
mesh_point_t() = default;
mesh_point_t(mesh_product const &m_, index_t index_)
: m(&m_)
, _c(triqs::tuple::apply_on_zip([](auto const & m, auto const & i) { return m[i]; }, m_.m_tuple, index_))
, _atend(false) {}
mesh_point_t(mesh_product const &m_) : m(&m_), _c(triqs::tuple::apply_on_tuple(F1(), m_.m_tuple)), _atend(false) {}
m_pt_tuple_t const &components_tuple() const { return _c; }
size_t linear_index() const { return m->mp_to_linear(_c); }
const mesh_product *mesh() const { return m; }
using cast_t = domain_pt_t;
operator cast_t() const { return m->index_to_point(index); }
// index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim
void advance() {
auto l = [](auto &p, bool done) {
if (done) return true;
p.advance();
if (!p.at_end()) return true;
p.reset();
return false;
};
triqs::tuple::fold(l, _c, false);
}
// index_t index() const { return _index;} // not implemented yet
bool at_end() const { return _atend; }
void reset() {
_atend = false;
triqs::tuple::for_each(_c, [](auto &m) { m.reset(); });
}
}; // end mesh_point_t
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
mesh_point_t operator()(typename Meshes::index_t... i) const { return (*this)[std::make_tuple(i...)]; }
/// Iterating on all the points...
using const_iterator = mesh_pt_generator;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// Mesh comparison
friend bool operator==(mesh_product const &M1, mesh_product const &M2) { return M1.m_tuple == M2.m_tuple; }
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, mesh_product const &m) {
h5::group gr = fg.create_group(subgroup_name);
auto l = [gr](auto const &m, int N) { h5_write(gr, "MeshComponent" + std::to_string(N), m); };
triqs::tuple::for_each_enumerate(m.components(), l);
}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, mesh_product &m) {
h5::group gr = fg.open_group(subgroup_name);
auto l = [gr](auto &m, int N) { h5_read(gr, "MeshComponent" + std::to_string(N), m); };
triqs::tuple::for_each_enumerate(m.components(), l);
}
/// BOOST Serialization
friend class boost::serialization::access;
template void serialize(Archive &ar, const unsigned int version) {
auto l = [&ar](auto &m, int N) { ar &boost::serialization::make_nvp("MeshComponent" + std::to_string(N), m); };
triqs::tuple::for_each_enumerate(m_tuple, l);
}
friend std::ostream &operator<<(std::ostream &sout, mesh_product const &m) { return sout << "Product Mesh"; }
private:
m_tuple_t m_tuple;
domain_t _dom;
};
template decltype(auto) get_index(P const &p) {return std::get(p.components_tuple()).index();}
template decltype(auto) get_point(P const &p) {
return std::get(p.mesh()->components()).index_to_point(std::get(p.components_tuple()).index());
}
template decltype(auto) get_component(P const &p) { return std::get(p.components_tuple()); }
// Given a composite mesh m , and a linear array of storage A
// reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array
// with indices egal to the indices of the components of the mesh.
// Very useful for slicing, currying functions.
template
arrays::array_view
reinterpret_linear_array(mesh_product const &m, arrays::array_view A) {
return {{join(m.shape(), get_shape(A).front_pop())}, A.storage()};
}
}
}