High-Frequency Tail (``TailGf``) ========================================= Definition ---------------------- The tail of a Green's function is defined as the behavior of the Green's function :math:`G` at large Matsubara frequencies, namely .. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots Generically, the tail is parametrized by matrix-valued coefficients :math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ ) .. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i} Implementation -------------- In TRIQS, the tail is contained in an Python object ``TailGf`` with the following members: - ``data`` is a numpy array representing :math:`\mathbf{a}_{i}` : ``data[i,m,n]`` :math:`= (\mathbf{a}_i)_{m,n}`\ . - ``mask`` is the :math:`N_1\times N_2` numpy array of the maximal index :math:`i_{nm}` of the known coefficients (``order_max`` may be larger than ``mask``, but all coefficients of indices greater than ``mask`` are irrelevant) - ``N1`` and ``N2`` give the size of each tail coefficient :math:`\mathbf{a}_{i}` : :math:`N_1\times N_2` - ``size`` is the number of coefficients of the tail. - ``__getitem__``and ``__setitem__`` operators: access and set the ith coefficient :math:`\mathbf{a}_{i}` with the bracket operator - ``__call__`` operator: evaluate the tail at a given frequency Example ------- Basic ``TailGf`` object ~~~~~~~~~~~~~~~~~~~~~~~ .. runblock:: python from pytriqs.gf.local import * t = TailGf(shape=(1,1)) print "t = ",t print "t.data.shape = ",t.data.shape print "t.order_min = ",t.order_min print "t.order_max = ",t.order_max print "t.mask = ",t.mask print "t[1] = ",t[1] t[1]=[1] print "t = ",t t[-1]=.25 print "t = ",t print "t(100) = ",t(100) As a member of a Green's function ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Basic access ^^^^^^^^^^^^ .. runblock:: python from pytriqs.gf.local import * # Create the Matsubara-frequency Green's function and initialize it g = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp") g <<= inverse( iOmega_n + 0.5 ) print "g.tail = ", g.tail print "g.tail[2] = ",g.tail[2] Fitting tails: ``fit_tail`` ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Green's functions have a method ``fit_tail`` allowing to fit the data contained in the Green's function. ``fit_tail`` is called in the following way: ``fit_tail(fixed_coeff, order_max, fit_start, fit_stop)`` where - ``fixed_coeff`` is the :math:`n\times N_1 \times N_2` numpy array of know coefficients (``fixed_coeff[i,n,m]``:math:`\equiv (\mathbf{a}_{-1+i})_{nm}`\ ) - ``order_max`` is the maximal index of the coefficients to be determined - ``fit_start`` and ``fit_stop`` are the frequencies between which to fit the data In the following example, the Green's function ``g`` defined above is fitted between :math:`\omega_n=10` and :math:`\omega_n = 20` with fixed coefficients :math:`(\mathbf{a}_{-1})_{00} = 0`\ , :math:`(\mathbf{a}_{0})_{00} = 0` and :math:`(\mathbf{a}_{1})_{00} = 1` .. runblock:: python from pytriqs.gf.local import * g = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp") g <<= inverse( iOmega_n + 0.5 ) g.tail.zero() fixed_coeff=numpy.zeros([1,1,3],float) fixed_coeff[0,0,0]=0. fixed_coeff[0,0,1]=0. fixed_coeff[0,0,2]=1. order_max = 4 fit_start = 10. fit_stop = 20. g.fit_tail(fixed_coeff, order_max, fit_start, fit_stop) print "g.tail = ", g.tail