/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_TWO_TIMES_H #define TRIQS_GF_TWO_TIMES_H #include "./tools.hpp" #include "./gf.hpp" #include "./retime.hpp" #include "./meshes/product.hpp" namespace triqs { namespace gfs { struct two_real_times {}; // the mesh template struct gf_mesh :mesh_product ,gf_mesh > { typedef mesh_product ,gf_mesh > B; gf_mesh() = default; gf_mesh (double tmax, double n_time_slices) : B(gf_mesh ( 0, tmax,n_time_slices, full_bins), gf_mesh ( 0, tmax,n_time_slices, full_bins) ) {} }; namespace gfs_implementation { /// --------------------------- closest mesh point on the grid --------------------------------- template struct get_closest_point { typedef typename gf_mesh::type mesh_t; // // NOT FINISHED, NOT TESTED // template // static typename mesh_t::index_t invoke(G const * g, closest_pt_wrap const & p) { // return std::floor( double(p.value) / g->mesh().delta() + 0.5); // } }; // h5 name template struct h5_name { static std::string invoke(){ return "GfTwoRealTime";}}; template struct h5_name { static std::string invoke(){ return "GfTwoRealTime_s";}}; /// --------------------------- evaluator --------------------------------- template struct evaluator { static constexpr int arity = 2; typedef typename std::conditional < std::is_same::value, arrays::matrix>, std::complex>::type rtype; template rtype operator() (G const * g, double t0, double t1) const { int n0,n1; double w0,w1; bool in; std::tie(in, n0, w0) = windowing(std::get<0>(g->mesh().components()),t0); if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds"; std::tie(in, n1, w1) = windowing(std::get<1>(g->mesh().components()),t1); if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds"; auto gg = on_mesh(*g); return (1-w0) * ( (1-w1) * gg(n0, n1) + w1 * gg(n0, n1+1) ) + w0 * ( (1-w1) * gg(n0+1, n1) + w1 * gg(n0+1, n1+1)); } }; /// --------------------------- data access --------------------------------- template struct data_proxy : data_proxy_array,3> {}; template struct data_proxy : data_proxy_array,1> {}; // ------------------------------- Factories -------------------------------------------------- //matrix_valued template struct factories { typedef gf gf_t; typedef gf_mesh mesh_t; typedef tqa::mini_vector target_shape_t; static gf_t make_gf(double tmax, double n_time_slices, tqa::mini_vector shape) { auto m = gf_mesh(tmax, n_time_slices); typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0; return gf_t (m, std::move(A), nothing(), nothing() ) ; } }; //scalar_valued template struct factories { typedef gf gf_t; typedef gf_mesh mesh_t; struct target_shape_t {}; static gf_t make_gf(double tmax, double n_time_slices) { auto m = gf_mesh(tmax, n_time_slices); typename gf_t::data_regular_t A(m.size()); A() =0; return gf_t (m, std::move(A), nothing(), nothing() ) ; } }; } // gfs_implementation // ------------------------------- Additionnal free function for this gf -------------------------------------------------- // from g(t,t') and t, return g(t-t') for any t'>t // inline gf slice (gf_view const & g, double t) { auto const & m = std::get<0> (g.mesh().components()); //one-time mesh int it = get_closest_mesh_pt_index(m, t); //index of t on this mesh int nt = m.size() - it; if (it+1 < nt) nt = it+1 ; //nt=length of the resulting GF's mesh double dt = m.delta(); auto res = gf{{0, 2*(nt-1)*dt, nt}, g(t,t).shape()}; res() = 0; auto _ = arrays::range();// everyone for(int sh=0; sh auto get_1d_mesh_from_2times_mesh(M const & m) DECL_AND_RETURN(std::get<0>(m.components())); }} #endif