/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_GF_TWO_TIMES_H
#define TRIQS_GF_TWO_TIMES_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./retime.hpp"
#include "./meshes/product.hpp"
namespace triqs { namespace gfs {
struct two_real_times {};
// the mesh
template struct gf_mesh :mesh_product ,gf_mesh > {
typedef mesh_product ,gf_mesh > B;
gf_mesh() = default;
gf_mesh (double tmax, double n_time_slices) :
B(gf_mesh ( 0, tmax,n_time_slices, full_bins),
gf_mesh ( 0, tmax,n_time_slices, full_bins) ) {}
};
namespace gfs_implementation {
/// --------------------------- closest mesh point on the grid ---------------------------------
template
struct get_closest_point {
typedef typename gf_mesh::type mesh_t;
// // NOT FINISHED, NOT TESTED
// template
// static typename mesh_t::index_t invoke(G const * g, closest_pt_wrap const & p) {
// return std::floor( double(p.value) / g->mesh().delta() + 0.5);
// }
};
// h5 name
template struct h5_name { static std::string invoke(){ return "GfTwoRealTime";}};
template struct h5_name { static std::string invoke(){ return "GfTwoRealTime_s";}};
/// --------------------------- evaluator ---------------------------------
template
struct evaluator {
static constexpr int arity = 2;
typedef typename std::conditional < std::is_same::value, arrays::matrix>, std::complex>::type rtype;
template
rtype operator() (G const * g, double t0, double t1) const {
int n0,n1; double w0,w1; bool in;
std::tie(in, n0, w0) = windowing(std::get<0>(g->mesh().components()),t0);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
std::tie(in, n1, w1) = windowing(std::get<1>(g->mesh().components()),t1);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g);
return (1-w0) * ( (1-w1) * gg(n0, n1) + w1 * gg(n0, n1+1) ) + w0 * ( (1-w1) * gg(n0+1, n1) + w1 * gg(n0+1, n1+1));
}
};
/// --------------------------- data access ---------------------------------
template struct data_proxy : data_proxy_array,3> {};
template struct data_proxy : data_proxy_array,1> {};
// ------------------------------- Factories --------------------------------------------------
//matrix_valued
template struct factories {
typedef gf gf_t;
typedef gf_mesh mesh_t;
typedef tqa::mini_vector target_shape_t;
static gf_t make_gf(double tmax, double n_time_slices, tqa::mini_vector shape) {
auto m = gf_mesh(tmax, n_time_slices);
typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
};
//scalar_valued
template struct factories {
typedef gf gf_t;
typedef gf_mesh mesh_t;
struct target_shape_t {};
static gf_t make_gf(double tmax, double n_time_slices) {
auto m = gf_mesh(tmax, n_time_slices);
typename gf_t::data_regular_t A(m.size()); A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
};
} // gfs_implementation
// ------------------------------- Additionnal free function for this gf --------------------------------------------------
// from g(t,t') and t, return g(t-t') for any t'>t
//
inline gf slice (gf_view const & g, double t) {
auto const & m = std::get<0> (g.mesh().components()); //one-time mesh
int it = get_closest_mesh_pt_index(m, t); //index of t on this mesh
int nt = m.size() - it;
if (it+1 < nt) nt = it+1 ; //nt=length of the resulting GF's mesh
double dt = m.delta();
auto res = gf{{0, 2*(nt-1)*dt, nt}, g(t,t).shape()};
res() = 0;
auto _ = arrays::range();// everyone
for(int sh=0; sh
auto get_1d_mesh_from_2times_mesh(M const & m) DECL_AND_RETURN(std::get<0>(m.components()));
}}
#endif