Anticommutators: { 1*C^+(1,0) , 1*C(1,0) } = 1 { 1*C^+(1,0) , 1*C(2,0) } = 0 { 1*C^+(1,0) , 1*C(3,0) } = 0 { 1*C^+(2,0) , 1*C(1,0) } = 0 { 1*C^+(2,0) , 1*C(2,0) } = 1 { 1*C^+(2,0) , 1*C(3,0) } = 0 { 1*C^+(3,0) , 1*C(1,0) } = 0 { 1*C^+(3,0) , 1*C(2,0) } = 0 { 1*C^+(3,0) , 1*C(3,0) } = 1 Commutators: [ 1*C^+(1,0) , 1*C(1,0) ] = -1 + 2*C^+(1,0)C(1,0) [ 1*C^+(1,0) , 1*C(2,0) ] = 2*C^+(1,0)C(2,0) [ 1*C^+(1,0) , 1*C(3,0) ] = 2*C^+(1,0)C(3,0) [ 1*C^+(2,0) , 1*C(1,0) ] = 2*C^+(2,0)C(1,0) [ 1*C^+(2,0) , 1*C(2,0) ] = -1 + 2*C^+(2,0)C(2,0) [ 1*C^+(2,0) , 1*C(3,0) ] = 2*C^+(2,0)C(3,0) [ 1*C^+(3,0) , 1*C(1,0) ] = 2*C^+(3,0)C(1,0) [ 1*C^+(3,0) , 1*C(2,0) ] = 2*C^+(3,0)C(2,0) [ 1*C^+(3,0) , 1*C(3,0) ] = -1 + 2*C^+(3,0)C(3,0) Algebra: x = 1*C(0,0) y = 1*C^+(1,0) -x = -1*C(0,0) x + 2.0 = 2 + 1*C(0,0) 2.0 + x = 2 + 1*C(0,0) x - 2.0 = -2 + 1*C(0,0) 2.0 - x = 2 + -1*C(0,0) 3.0*y = 3*C^+(1,0) y*3.0 = 3*C^+(1,0) x + y = 1*C^+(1,0) + 1*C(0,0) x - y = -1*C^+(1,0) + 1*C(0,0) (x + y)*(x - y) = 2*C^+(1,0)C(0,0) N^3: N = 1*C^+(0,dn)C(0,dn) + 1*C^+(0,up)C(0,up) N^3 = 1*C^+(0,dn)C(0,dn) + 1*C^+(0,up)C(0,up) + 6*C^+(0,dn)C^+(0,up)C(0,up)C(0,dn)