from numpy import array, zeros import math from pytriqs.lattice.tight_binding import * # Define the Bravais Lattice : a square lattice in 2d BL_1 = BravaisLattice(units = [(1,0,0) , (0,1,0) ], orbital_positions= {"": (0,0,0)} ) BL_2 = BravaisLattice(units = [(1,1,0) , (-1,1,0) ], orbital_positions= {"A": (0,0,0), "B": (.5,.5,0)} ) BL_4 = BravaisLattice(units = [(2,0,0) , (0,2,0) ], orbital_positions= {"A": (0,0,0), "B": (0,.5,0), "C": (.5,0,0), "D": (.5,.5,0)} ) # Hopping dictionaries t = .25; tp = -.1; hop_1= { (1,0) : [[ t]], (-1,0) : [[ t]], (0,1) : [[ t]], (0,-1) : [[ t]], (1,1) : [[ tp]], (-1,-1): [[ tp]], (1,-1) : [[ tp]], (-1,1) : [[ tp]] } hop_2= { (0,0) :[[0.,t], [t,0.]], (1,0) : [[ tp, 0], [ t ,tp]], (-1,0) : [[ tp, t], [ 0 ,tp]], (0,1) :[[ tp, 0], [ t, tp]], (0,-1) :[[ tp, t], [ 0 ,tp]], (1,1) : [[ 0, 0], [ t,0]], (-1,-1) :[[ 0, t], [ 0,0]], (-1,1) : [[ 0, 0], [ 0,0]], (1,-1) : [[ 0, 0], [ 0,0]] } hop_4= { (0,0) :[[0.,t, tp,t], [t,0., t,tp], [tp,t,0,t], [t,tp,t,0]], (1,0) : [[0.,0, 0,0], [t,0.,0,tp], [tp,0,0,t], [0,0,0,0]], (-1,0) : [[0.,t, tp,0], [0,0.,0,0], [0,0,0,0], [0,tp,t,0]], (0,1) : [[0.,0, 0,0], [0,0.,0,0], [tp,t,0,0], [t,tp,0,0]], (0,-1) :[[0.,0, tp,t], [0,0.,t,tp], [0,0,0,0], [0,0,0,0]], (1,1) : [[0.,0, 0,0], [0,0.,0,0], [tp,0,0,0], [0,0,0,0]], (-1,-1) : [[0.,0, tp,0], [0,0.,0,0], [0,0,0,0], [0,0,0,0]], (-1,1) : [[0.,0, 0,0], [0,0.,0,0], [0,0,0,0], [0,tp,0,0]], (1,-1) :[[0.,0, 0,0], [0,0.,0,tp], [0,0,0,0], [0,0,0,0]], } TB_1 = TightBinding(BL_1, hop_1) TB_2 = TightBinding(BL_2, hop_2) TB_4 = TightBinding(BL_4, hop_4) # High-symmetry points Gamma = array([0. ,0. ]); PiPi = array([math.pi ,math.pi ])*1/(2*math.pi); Pi0 = array([math.pi ,0 ])*1/(2*math.pi); PihPih = array([math.pi/2 ,math.pi/2])*1/(2*math.pi) TwoPi0 = array([2*math.pi ,0 ])*1/(2*math.pi); TwoPiTwoPi= array([math.pi*2 ,math.pi*2])*1/(2*math.pi) n_pts=50 # Paths along high-symmetry directions path_1=[Gamma,Pi0,PiPi,Gamma] path_2=[Gamma,PiPi,TwoPi0,Gamma] #equivalent to path_1 in coordinates of 2at/ucell basis path_4=[Gamma,TwoPi0,TwoPiTwoPi,Gamma] #equivalent to path_1 in coordinates of 4at/ucell basis def energies_on_path(path, TB, n_pts, n_orb=1): E=zeros((n_orb,n_pts*(len(path)-1))) for i in range(len(path)-1,0,-1): energies = energies_on_bz_path (TB, path[i-1], path[i], n_pts) for orb in range(n_orb): E[orb,(i-1)*n_pts:(i)*n_pts]=energies[orb,:] print "index of point #"+str(i-1)+" = "+str((i-1)*n_pts) return E E_1= energies_on_path(path_1,TB_1,n_pts,1) E_2= energies_on_path(path_2,TB_2,n_pts,2) E_4= energies_on_path(path_4,TB_4,n_pts,4) from matplotlib import pylab as plt plt.plot(E_1[0], '--k', linewidth=4, label = "1 at/unit cell") plt.plot(E_2[0],'-.g', linewidth=4, label = "2 ats/unit cell") plt.plot(E_2[1],'-.g', linewidth=4) plt.plot(E_4[0],'-r', label = "4 ats/unit cell") plt.plot(E_4[1],'-r') plt.plot(E_4[2],'-r') plt.plot(E_4[3],'-r') plt.grid() plt.legend() plt.axes().set_xticks([0,50,100,150]) plt.axes().set_xticklabels([r'$\Gamma_1$',r'$M_1$',r'$X_1$',r'$\Gamma_1$']) plt.ylabel(r"$\epsilon$")