c ****************************************************************************** c c TRIQS: a Toolbox for Research in Interacting Quantum Systems c c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn c c TRIQS is free software: you can redistribute it and/or modify it under the c terms of the GNU General Public License as published by the Free Software c Foundation, either version 3 of the License, or (at your option) any later c version. c c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more c details. c c You should have received a copy of the GNU General Public License along with c TRIQS. If not, see <http://www.gnu.org/licenses/>. c c *****************************************************************************/ SUBROUTINE outband C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine creates the output file case.outband, with all %% C %% the informations necessary for the computation of the spectral %% C %% function of the system. %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Definition of the variables : C ----------------------------- USE almblm_data USE bands USE common_data USE file_names USE prnt USE projections USE reps IMPLICIT NONE C INTEGER :: iorb, icrorb, irep, isrt INTEGER :: l, m, is, i1, i2, i INTEGER :: ik, il, ib, ir, n INTEGER :: ind1, ind2, iatom C WRITE(buf,'(a)')'Writing the file case.outband...' CALL printout(0) C C ====================================== C Informations about the chosen k-path : C ====================================== C C Number of k-points along the chosen k-path WRITE(ouband,'(i6)') nkband C Description of the number of bands in the energy window at each k_point C DO is=1,ns C If SO is considered, the number of up and dn bands are the same. IF ((ifSP.AND.ifSO).and.(is.eq.2)) cycle DO ik=1,nk WRITE(ouband,'(i6)') & ABS(kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1) ENDDO ! End of the ik loop ENDDO ! End of the is loop C for each k-point, the number of band included in the energy window is written. C =========================================================== C Description of the projectors for the correlated orbitals : C =========================================================== DO ik=1,nk DO icrorb=1,ncrorb l=crorb(icrorb)%l isrt=crorb(icrorb)%sort C C The case l=0 is a particular case of "non-mixing" basis. C -------------------------------------------------------- IF (l==0) THEN C For the s-orbitals, the only irep possible is the matrix itself. DO is=1,ns WRITE(ouband,*) & REAL(pr_crorb(icrorb,ik,is)%mat_rep(1, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO DO is=1,ns WRITE(ouband,*) & AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(1, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO C C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ). C --------------------------------------------------------------------------------------------- ELSEIF (reptrans(l,isrt)%ifmixing) THEN C In this case, the SO is necessary considered, spinor rotation matrices are used. IF(crorb(icrorb)%ifsplit) THEN C If only 1 irep is correlated ind1=1 DO irep=1,reptrans(l,isrt)%nreps IF(crorb(icrorb)%correp(irep)) THEN ind2=ind1+reptrans(l,isrt)%dreps(irep)-1 DO m=ind1,ind2 WRITE(ouband,*) & REAL(pr_crorb(icrorb,ik,1)%mat_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top)) ENDDO DO m=ind1,ind2 WRITE(ouband,*) & AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top)) ENDDO ENDIF ind1=ind1+reptrans(l,isrt)%dreps(irep) ENDDO ELSE C If no particular irep is correlated DO m=1,2*(2*l+1) WRITE(ouband,*) & REAL(pr_crorb(icrorb,ik,1)%mat_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top)) ENDDO DO m=1,2*(2*l+1) WRITE(ouband,*) & AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top)) ENDDO ENDIF C C If the basis representation can be reduce to the up/up block (basis without "mixing"). C -------------------------------------------------------------------------------------- ELSE IF ((.not.(ifSP.AND.ifSO)).AND.crorb(icrorb)%ifsplit) THEN C If only 1 irep is correlated (case without SO) ind1=-l DO irep=1,reptrans(l,isrt)%nreps IF(crorb(icrorb)%correp(irep)) THEN ind2=ind1+reptrans(l,isrt)%dreps(irep)-1 DO is=1,ns DO m=ind1,ind2 WRITE(ouband,*) & REAL(pr_crorb(icrorb,ik,is)%mat_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO ENDDO DO is=1,ns DO m=ind1,ind2 WRITE(ouband,*) & AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO ENDDO ENDIF ind1=ind1+reptrans(l,isrt)%dreps(irep) ENDDO ELSE C If no particular irep is correlated (case with and without SO) DO is=1,ns DO m=-l,l WRITE(ouband,*) & REAL(pr_crorb(icrorb,ik,is)%mat_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO ENDDO DO is=1,ns DO m=-l,l WRITE(ouband,*) & AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) ENDDO ENDDO END IF ! End of the ifsplit if-then-else END IF ! End of the ifmixing if-then-else END DO ! End of the icrorb loop END DO ! End of the ik loop C for each k-point and each correlated orbital, the corresponding projector is described by : C - the real part of the "correlated" submatrix C - the imaginary part of the "correlated" submatrix C C ====================================================== C Description of the Hamiltonian H(k) at each k_point : C ====================================================== DO is=1,ns DO ik=1,nk C If SO is considered, the numbers of up and dn bands are the same. IF (ifSO.and.is.eq.2) cycle DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top WRITE(ouband,*) kp(ik,is)%eband(ib) ENDDO ENDDO ! End of the ik loop ENDDO ! End of the is loop C for each spin value is and each k-point, C - the energies of the band with spin is at point k C C ================================================================ C Description of the size of the basis for each included orbital : C ================================================================ DO iorb=1,norb WRITE(ouband,'(3(i6))') norm_radf(iorb)%n ENDDO C There is not more than 1 LO for each orbital (hence n < 4 ) C C ==================================== C Description of the Theta projector : C ==================================== DO iorb=1,norb l=orb(iorb)%l isrt=orb(iorb)%sort C C The case l=0 is a particular case of "non-mixing" basis. C -------------------------------------------------------- IF (l==0) THEN DO ik=1,nk DO ir=1,norm_radf(iorb)%n DO is=1,ns WRITE(ouband,*) & REAL(pr_orb(iorb,ik,is)%matn_rep(1, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir)) ENDDO DO is=1,ns WRITE(ouband,*) & AIMAG(pr_orb(iorb,ik,is)%matn_rep(1, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir)) ENDDO ENDDO ! End of the ir loop ENDDO ! End of the ik loop C C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ). C --------------------------------------------------------------------------------------------- ELSEIF (reptrans(l,isrt)%ifmixing) THEN C In this case, the calculation is necessary spin-polarized with SO, spinor rotation matrices are used. DO ik=1,nk DO ir=1,norm_radf(iorb)%n DO m=1,2*(2*l+1) WRITE(ouband,*) & REAL(pr_orb(iorb,ik,1)%matn_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir)) ENDDO DO m=1,2*(2*l+1) WRITE(ouband,*) & AIMAG(pr_orb(iorb,ik,1)%matn_rep(m, & kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir)) ENDDO ENDDO ! End of the ir loop ENDDO ! End of the ik loop C C If the basis representation can be reduce to the up/up block (basis without "mixing"). C -------------------------------------------------------------------------------------- ELSE DO ik=1,nk DO ir=1,norm_radf(iorb)%n DO is=1,ns DO m=-l,l WRITE(ouband,*) & REAL(pr_orb(iorb,ik,is)%matn_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir)) ENDDO ENDDO ! End of the is loop DO is=1,ns DO m=-l,l WRITE(ouband,*) & AIMAG(pr_orb(iorb,ik,is)%matn_rep(m, & kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir)) ENDDO ENDDO ! End of the is loop ENDDO ! End of the ir loop ENDDO ! End of the ik loop ENDIF ! End of the ifmixing if-then-else ENDDO ! End of the iorb loop C for each included orbital, for each k-point and each |phi_j> elmt, C the corresponding Thetaprojector is described by : C - the real part of the matrix C - the imaginary part of the matrix C C ============================= C Description of the k-labels : C ============================= DO i=1,nlab WRITE(ouband,'(2i6,a)') i,labels(i)%pos,labels(i)%kname ENDDO C for each label, are written : C - the number of the corresponding k-point in the k-path C - the name associated to this label C RETURN END