/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#define TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#include "./vector_algebra.hpp"
#include "../matrix.hpp"
#include "../linalg/det_and_inverse.hpp"
#include "../blas_lapack/gemv.hpp"
#include "../blas_lapack/gemm.hpp"
namespace triqs { namespace arrays {
// matrix * matrix
template struct _matmul_rvalue {};
template struct _matmul_rvalue::value && ImmutableMatrix::value)> {
typedef typename std::remove_const::type V1;
typedef typename std::remove_const::type V2;
typedef matrix::type> type;
};
template
typename _matmul_rvalue::type
operator * (A const & a, B const & b) {
if (second_dim(a) != first_dim(b)) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in A*B "<< a<<" "<< b;
auto R = typename _matmul_rvalue::type( first_dim(a), second_dim(b));
blas::gemm(1.0,a, b, 0.0, R);
return R;
}
// matrix * vector
template struct _mat_vec_mul_rvalue {};
template struct _mat_vec_mul_rvalue::value && ImmutableVector::value)> {
typedef typename std::remove_const::type V1;
typedef typename std::remove_const::type V2;
typedef vector::type> type;
};
template
typename _mat_vec_mul_rvalue::type
operator * (M const & m, V const & v) {
if (second_dim(m) != v.size()) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in Matrix*Vector "<< m<<" "<< v;
auto R = typename _mat_vec_mul_rvalue::type(first_dim(m));
blas::gemv(1.0,m,v,0.0,R);
return R;
}
// expression template
template
struct matrix_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename std::remove_reference::type L_t;
typedef typename std::remove_reference::type R_t;
static_assert( get_rank::value==0 || get_rank::value==0 || get_rank::value == get_rank::value, "rank mismatch in matrix operations");
typedef typename std::result_of(typename L_t::value_type,typename R_t::value_type)>::type value_type;
typedef typename std::remove_cv< typename std::remove_reference::type>::type>::type domain_type;
L l; R r;
template matrix_expr(LL && l_, RR && r_) : l(std::forward(l_)), r(std::forward(r_)) {}
domain_type domain() const { return combine_domain()(l,r); }
template value_type operator()(Args && ... args) const { return utility::operation()(l(std::forward(args)...) , r(std::forward(args)...));}
friend std::ostream &operator <<(std::ostream &sout, matrix_expr const &expr){return sout << "("<::name << " "< // a special case : the unary operator !
struct matrix_unary_m_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename std::remove_reference::type L_t;
typedef typename L_t::value_type value_type;
typedef typename L_t::domain_type domain_type;
L l;
template matrix_unary_m_expr(LL && l_) : l(std::forward(l_)) {}
domain_type domain() const { return l.domain(); }
template value_type operator()(Args && ... args) const { return -l(std::forward(args)...);}
friend std::ostream &operator <<(std::ostream &sout, matrix_unary_m_expr const &expr){return sout << '-'<\
typename std::enable_if::value && TRAIT2 ::value, \
matrix_expr::type, typename node_t::type>>::type\
operator OP (A1 && a1, A2 && a2) { return {std::forward(a1),std::forward(a2)};}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(divides, /, ImmutableMatrix,is_in_ZRC);
#undef DEFINE_OPERATOR
// the addition/substraction of diagonal matrix is special : all scalar are diagonal matrices here...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template\
typename std::enable_if::value && TRAIT2 ::value, \
matrix_expr::type, typename node_t::type>>::type\
operator OP (A1 && a1, A2 && a2) { return {std::forward(a1),std::forward(a2)};}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(plus, +, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
#undef DEFINE_OPERATOR
// the unary is special
template
typename std::enable_if<
ImmutableMatrix::value,
matrix_unary_m_expr::type >
>::type
operator - (A1 && a1) { return {std::forward(a1)};}
template::value>::type >
struct _a_div_matrix {
template auto operator() (A && a, M && m) DECL_AND_RETURN ( std::forward(a) * inverse(std::forward(m)));
};
//typedef decltype ( std::declval::type>() * inverse(std::declval::type>() )) type;
template // anything / matrix ---> anything * inverse(matrix)
//typename boost::lazy_enable_if< ImmutableMatrix, std::result_of<_a_div_matrix(A,M)__type_of_mult_expr_matrix >::type
//typename std::result_of<_a_div_matrix(A,M)>::type
//operator/ (A && a, M && m) {return _a_div_matrix()( std::forward(a), std::forward(m));}
auto operator/ (A && a, M && m) DECL_AND_RETURN( _a_div_matrix()( std::forward(a), std::forward(m)));
// -> typename std::enable_if< ImmutableMatrix::value, decltype(std::forward(a) * inverse(std::forward(m)))>::type
//{ return std::forward(a) * inverse(std::forward(m));}
}}//namespace triqs::arrays
#endif