.. highlight:: c How does it work ? ################### Cofactors ========== For any :math:`n\times n` matrix :math:`A`: .. math:: A\,{\rm Cof}(A^T) = {\rm Det}A\, I_n. where :math:`\rm{Cof}` means the matrix of the cofactors. .. math:: {\rm Cof}(A)_{i,j} =(-1)^{i+j}{\rm Det}\begin{pmatrix} a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1}& \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1}& \dots & a_{i+1,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}. Change in the determinant when one adds a line and a column ============================================================ :math:`A` is an inversible :math:`n\times n` matrix. :math:`A'` is a :math:`(n+1)\times (n+1)` matrix obtained by adding a line and a column to :math:`A`: .. math:: A'=\begin{pmatrix} A & B \\ C & D \end{pmatrix}. Using the previous formula with the cofactors, we get .. math:: \frac{{\rm Det}A'}{{\rm Det}A}=C A^{-1} B+D. Change in the inverse when one adds a line and a column ========================================================== Using the following variables: .. math:: \xi=D-C A^{-1} B, \qquad B'=A^{-1}B, \qquad C'=CA^{-1}, We get the inverse of the new matrix as: .. math:: (A')^{-1}= \begin{pmatrix} A^{-1}+\xi B'C' & -\xi B'\\ -\xi C' & \xi \end{pmatrix}