/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2011 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #include "fourier_real.hpp" #include namespace triqs { namespace gfs { namespace { double pi = std::acos(-1); dcomplex I(0,1); inline dcomplex th_expo(double t, double a ) { return (t > 0 ? -I * exp(-a*t) : ( t < 0 ? 0 : -0.5 * I * exp(-a*t) ) ) ; } inline dcomplex th_expo_neg(double t, double a ) { return (t < 0 ? I * exp( a*t) : ( t > 0 ? 0 : 0.5 * I * exp( a*t) ) ) ; } inline dcomplex th_expo_inv(double w, double a ) { return 1./(w+I*a) ; } inline dcomplex th_expo_neg_inv(double w, double a ) { return 1./(w-I*a) ; } } struct impl_worker { arrays::vector g_in, g_out; void direct (gf_view gw, gf_const_view gt){ size_t L = gt.mesh().size(); if (gw.mesh().size() != L) TRIQS_RUNTIME_ERROR << "Meshes are different"; double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1); if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible"; const double tmin = gt.mesh().x_min(); const double wmin = gw.mesh().x_min(); //a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation const double a = gw.mesh().delta() * sqrt( double(L) ); auto ta = gt(freq_infty()); g_in.resize(L); g_in() = 0; g_out.resize(L); dcomplex t1 = ta(1)(0,0), t2= ta.get_or_zero(2)(0,0); dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.; for (auto const & t : gt.mesh()) g_in[t.index()] = (gt[t] - (a1*th_expo(t,a) + a2*th_expo_neg(t,a))) * std::exp(I*t*wmin); details::fourier_base(g_in, g_out, L, true); for (auto const & w : gw.mesh()) gw[w] = gt.mesh().delta() * std::exp(I*(w-wmin)*tmin) * g_out(w.index()) + a1*th_expo_inv(w,a) + a2*th_expo_neg_inv(w,a); gw.singularity() = gt.singularity();// set tail } void inverse(gf_view gt, gf_const_view gw){ size_t L = gw.mesh().size(); if ( L != gt.mesh().size()) TRIQS_RUNTIME_ERROR << "Meshes are different"; double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1); if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible"; const double tmin = gt.mesh().x_min(); const double wmin = gw.mesh().x_min(); //a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation const double a = gw.mesh().delta() * sqrt( double(L) ); auto ta = gw(freq_infty()); arrays::vector g_in(L), g_out(L); dcomplex t1 = ta(1)(0,0), t2 = ta.get_or_zero(2)(0,0); dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.; g_in() = 0; for (auto const & w: gw.mesh()) g_in(w.index()) = (gw[w] - a1*th_expo_inv(w,a) - a2*th_expo_neg_inv(w,a) ) * std::exp(-I*w*tmin); details::fourier_base(g_in, g_out, L, false); const double corr = 1.0/(gt.mesh().delta()*L); for (auto const & t : gt.mesh()) gt[t] = corr * std::exp(I*wmin*(tmin-t)) * g_out[ t.index() ] + a1 * th_expo(t,a) + a2 * th_expo_neg(t,a) ; // set tail gt.singularity() = gw.singularity(); } }; //-------------------------------------------------------------------------------------- void fourier_impl(gf_view gw, gf_const_view gt, scalar_valued){ impl_worker w; w.direct(gw, gt); } void fourier_impl(gf_view gw, gf_const_view gt, matrix_valued){ impl_worker w; for (size_t n1=0; n1 gt, gf_const_view gw, scalar_valued){ impl_worker w; w.inverse(gt,gw); } void inverse_fourier_impl (gf_view gt, gf_const_view gw, matrix_valued){ impl_worker w; for (size_t n1=0; n1 g, gf_keeper const & L) { fourier_impl (g,L.g, matrix_valued());} void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L) { fourier_impl (g,L.g, scalar_valued());} void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L) { inverse_fourier_impl(g,L.g, matrix_valued());} void triqs_gf_view_assign_delegation( gf_view g, gf_keeper const & L) { inverse_fourier_impl(g,L.g, scalar_valued());} }}