/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_MESH_LINEAR_H #define TRIQS_GF_MESH_LINEAR_H #include "./mesh_tools.hpp" // ADDED for Krylov : to be clean and removed if necessary #include #include namespace triqs { namespace gfs { // Three possible meshes enum mesh_kind { half_bins, full_bins, without_last }; template struct linear_mesh { typedef Domain domain_t; typedef size_t index_t; typedef typename domain_t::point_t domain_pt_t; linear_mesh() : _dom(), L(0), a_pt(0), b_pt(0), xmin(0), xmax(0), del(0), meshk(half_bins) {} explicit linear_mesh(domain_t dom, double a, double b, size_t n_pts, mesh_kind mk) : _dom(std::move(dom)), L(n_pts), a_pt(a), b_pt(b), meshk(mk) { switch (mk) { case half_bins: del = (b - a) / L; xmin = a + 0.5 * del; break; case full_bins: del = (b - a) / (L - 1); xmin = a; break; case without_last: del = (b - a) / L; xmin = a; break; } xmax = xmin + del * (L - 1); } domain_t const &domain() const { return _dom; } size_t size() const { return L; } double delta() const { return del; } double x_max() const { return xmax; } double x_min() const { return xmin; } mesh_kind kind() const { return meshk; } /// Conversions point <-> index <-> linear_index domain_pt_t index_to_point(index_t ind) const { return embed(xmin + ind * del, std::integral_constant, domain_pt_t>::value>()); } private: // multiply by I is the type is a complex .... domain_pt_t embed(double x, std::false_type) const { return x; } domain_pt_t embed(double x, std::true_type) const { return std::complex(0, x); } public: size_t index_to_linear(index_t ind) const { return ind; } /// The wrapper for the mesh point class mesh_point_t : tag::mesh_point, public arith_ops_by_cast { linear_mesh const *m; index_t _index; public: mesh_point_t(linear_mesh const &mesh, index_t const &index_) : m(&mesh), _index(index_) {} void advance() { ++_index; } typedef domain_pt_t cast_t; operator cast_t() const { return m->index_to_point(_index); } size_t linear_index() const { return _index; } size_t index() const { return _index; } bool at_end() const { return (_index == m->size()); } void reset() { _index = 0; } }; /// Accessing a point of the mesh mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); } // ADDED for krylov : to be CLEANED AND CHANGED // Find the index of the mesh point which is nearest to x index_t nearest_index(domain_pt_t x) const { double x_real = real_or_imag(x, std::is_base_of, domain_pt_t>()); using boost::math::round; using std::min; using std::max; switch (meshk) { case half_bins: case full_bins: return min(max(round((x_real - xmin) / del), .0), static_cast(L - 1)); case without_last: return min(max(round((x_real - xmin) / del), .0), static_cast(L - 2)); } } private: static double real_or_imag(domain_pt_t x, std::false_type) { return x; } static double real_or_imag(domain_pt_t x, std::true_type) { return imag(x); } public: /// Iterating on all the points... typedef mesh_pt_generator const_iterator; const_iterator begin() const { return const_iterator(this); } const_iterator end() const { return const_iterator(this, true); } const_iterator cbegin() const { return const_iterator(this); } const_iterator cend() const { return const_iterator(this, true); } /// Mesh comparison bool operator==(linear_mesh const &M) const { return ((_dom == M._dom) && (size() == M.size()) && (std::abs(xmin - M.xmin) < 1.e-15) && (std::abs(xmax - M.xmax) < 1.e-15)); } bool operator!=(linear_mesh const &M) const { return !(operator==(M)); } /// Write into HDF5 friend void h5_write(h5::group fg, std::string subgroup_name, linear_mesh const &m) { h5::group gr = fg.create_group(subgroup_name); int k; switch (m.meshk) { case half_bins: k = 0; break; case full_bins: k = 1; break; case without_last: k = 2; break; } h5_write(gr, "domain", m.domain()); h5_write(gr, "min", m.a_pt); h5_write(gr, "max", m.b_pt); h5_write(gr, "size", m.size()); h5_write(gr, "kind", k); } /// Read from HDF5 friend void h5_read(h5::group fg, std::string subgroup_name, linear_mesh &m) { h5::group gr = fg.open_group(subgroup_name); typename linear_mesh::domain_t dom; double a, b; size_t L; int k; mesh_kind mk; h5_read(gr, "domain", dom); h5_read(gr, "min", a); h5_read(gr, "max", b); h5_read(gr, "size", L); h5_read(gr, "kind", k); switch (k) { case 0: mk = half_bins; break; case 1: mk = full_bins; break; case 2: mk = without_last; break; } m = linear_mesh(std::move(dom), a, b, L, mk); } // BOOST Serialization friend class boost::serialization::access; template void serialize(Archive &ar, const unsigned int version) { ar &boost::serialization::make_nvp("domain", _dom); ar &boost::serialization::make_nvp("a_pt", a_pt); ar &boost::serialization::make_nvp("b_pt", b_pt); ar &boost::serialization::make_nvp("xmin", xmin); ar &boost::serialization::make_nvp("xmax", xmax); ar &boost::serialization::make_nvp("del", del); ar &boost::serialization::make_nvp("size", L); ar &boost::serialization::make_nvp("kind", meshk); } friend std::ostream &operator<<(std::ostream &sout, linear_mesh const &m) { return sout << "Linear Mesh of size " << m.L; } private: domain_t _dom; size_t L; double a_pt, b_pt; double xmin, xmax; double del; mesh_kind meshk; }; // UNUSED /// Simple approximation of a point of the domain by a mesh point. No check template size_t get_closest_mesh_pt_index(linear_mesh const &mesh, typename D::point_t const &x) { double a = (x - mesh.x_min()) / mesh.delta(); return std::floor(a); } /// Approximation of a point of the domain by a mesh point template std::tuple windowing(linear_mesh const &mesh, typename D::point_t const &x) { double a = (x - mesh.x_min()) / mesh.delta(); long i = std::floor(a), imax = long(mesh.size()) - 1; bool in = (i >= 0) && (i < imax); double w = a - i; if (i == imax) { --i; in = (std::abs(w) < 1.e-14); w = 1.0; } return std::make_tuple(in, i, w); // return std::make_tuple(in, (in ? i : 0),w); } } } #endif