/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2011-2014 by L. Boehnke, M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #include "legendre_matsubara.hpp" #include "fourier_matsubara.hpp" #include "functions.hpp" #include using namespace triqs::utility; namespace triqs { namespace gfs { // ---------------------------- void legendre_matsubara_direct(gf_view gw, gf_const_view gl) { gw() = 0.0; triqs::arrays::range R; // Use the transformation matrix for (auto om : gw.mesh()) { for (auto l : gl.mesh()) { gw[om] += legendre_T(om.index(), l.index()) * gl[l]; } } gw.singularity() = get_tail(gl, gw.singularity().size(), gw.singularity().order_min()); } // ---------------------------- void legendre_matsubara_direct(gf_view gt, gf_const_view gl) { gt() = 0.0; legendre_generator L; for (auto t : gt.mesh()) { L.reset(2 * t / gt.domain().beta - 1); for (auto l : gl.mesh()) { gt[t] += sqrt(2 * l.index() + 1) / gt.domain().beta * gl[l] * L.next(); } } gt.singularity() = get_tail(gl, gt.singularity().size(), gt.singularity().order_min()); } // ---------------------------- void legendre_matsubara_inverse(gf_view gl, gf_const_view gt) { gl() = 0.0; legendre_generator L; // Do the integral over imaginary time for (auto t : gt.mesh()) { L.reset(2 * t / gt.domain().beta - 1); for (auto l : gl.mesh()) { gl[l] += sqrt(2 * l.index() + 1) * L.next() * gt[t]; } } gl.data() *= gt.mesh().delta(); } // ---------------------------- void legendre_matsubara_inverse(gf_view gl, gf_const_view gw) { gl() = 0.0; // Construct a temporary imaginary-time Green's function gt // I set Nt time bins. This is ugly, one day we must code the direct // transformation without going through imaginary time int Nt = 50000; auto gt = gf{{gw.domain(), Nt, half_bins}, gw.data().shape().front_pop()}; // We first transform to imaginary time because it's been coded with the knowledge of the tails gt() = inverse_fourier(gw); legendre_matsubara_inverse(gl, gt()); } void triqs_gf_view_assign_delegation(gf_view gw, gf_keeper const& L) { legendre_matsubara_direct(gw, L.g); } void triqs_gf_view_assign_delegation(gf_view gt, gf_keeper const& L) { legendre_matsubara_direct(gt, L.g); } void triqs_gf_view_assign_delegation(gf_view gl, gf_keeper const& L) { legendre_matsubara_inverse(gl, L.g); } void triqs_gf_view_assign_delegation(gf_view gl, gf_keeper const& L) { legendre_matsubara_inverse(gl, L.g); } } }