from triqs_dft_tools.sumk_dft_tools import * from triqs_dft_tools.converters.wien2k_converter import * from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver # Creates the data directory, cd into it: #Prepare_Run_Directory(DirectoryName = "Ce-Gamma") dft_filename = 'Ce-gamma' beta = 40 U_int = 6.00 J_hund = 0.70 DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein ommin=-4.0 ommax=6.0 N_om=2001 broadening = 0.02 # Convert DMFT input: Converter = Wien2kConverter(filename=dft_filename,repacking=True) Converter.convert_dft_input() Converter.convert_parproj_input() # Init the SumK class SK = SumkDFTTools(hdf_file=dft_filename+'.h5',use_dft_blocks=False) # load old chemical potential and DC if mpi.is_master_node(): SK.chemical_potential,SK.dc_imp,SK.dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ']) SK.chemical_potential = mpi.bcast(SK.chemical_potential) SK.dc_imp = mpi.bcast(SK.dc_imp) SK.dc_energ = mpi.bcast(SK.dc_energ) if (mpi.is_master_node()): print 'DC after reading SK: ',SK.dc_imp[0] N = SK.corr_shells[0]['dim'] l = SK.corr_shells[0]['l'] # Init the Solver: S = Solver(beta = beta, l = l) # set atomic levels: eal = SK.eff_atomic_levels()[0] S.set_atomic_levels( eal = eal ) # Run the solver to get GF and self-energy on the real axis S.GF_realomega(ommin=ommin, ommax = ommax, N_om=N_om,U_int=U_int,J_hund=J_hund) SK.set_Sigma([S.Sigma]) # compute DOS SK.dos_parproj_basis(broadening=broadening)