import numpy as np import time import os import pytriqs.utility.mpi as mpi from itertools import * from pytriqs.parameters.parameters import Parameters from pytriqs.operators.operators2 import * from pytriqs.archive import HDFArchive from pytriqs.applications.impurity_solvers.cthyb import * from pytriqs.gf.local import * from pytriqs.applications.dft.sumk_lda import * from pytriqs.applications.dft.converters.wien2k_converter import * from pytriqs.applications.dft.solver_multiband import * lda_filename='Gd_fcc' U = 9.6 J = 0.8 beta = 40 loops = 10 # Number of DMFT sc-loops sigma_mix = 1.0 # Mixing factor of Sigma after solution of the AIM delta_mix = 1.0 # Mixing factor of Delta as input for the AIM dc_type = 0 # DC type: 0 FLL, 1 Held, 2 AMF use_blocks = True # use bloc structure from LDA input prec_mu = 0.0001 # Solver parameters p = {} p["max_time"] = -1 p["random_name"] = "" p["random_seed"] = 123 * mpi.rank + 567 p["verbosity"] = 3 p["length_cycle"] = 50 p["n_warmup_cycles"] = 50 p["n_cycles"] = 5000 Converter = Wien2kConverter(filename=lda_filename, repacking=True) Converter.convert_dmft_input() mpi.barrier() previous_runs = 0 previous_present = False if mpi.is_master_node(): ar = HDFArchive(lda_filename+'.h5','a') if 'iterations' in ar: previous_present = True previous_runs = ar['iterations'] del ar previous_runs = mpi.bcast(previous_runs) previous_present = mpi.bcast(previous_present) # if previous runs are present, no need for recalculating the bloc structure: calc_blocs = use_blocks and (not previous_present) SK=SumkLDA(hdf_file=lda_filename+'.h5',use_lda_blocks=calc_blocs) n_orb = SK.corr_shells[0][3] l = SK.corr_shells[0][2] spin_names = ["up","down"] orb_names = ["%s"%i for i in range(num_orbitals)] orb_hybridized = False # Construct U matrix for density-density calculations gf_struct = set_operator_structure(spin_names,orb_names,orb_hybridized) # Construct U matrix for density-density calculations Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J) # Construct Hamiltonian and solver H = h_loc_density(spin_names, orb_names, orb_hybridized, U=Umat, Uprime=Upmat, H_dump="H.txt") S = Solver(beta=beta, gf_struct=gf_struct) if (previous_present): if (mpi.is_master_node()): ar = HDFArchive(lda_filename+'.h5','a') S.Sigma_iw << ar['Sigma_iw'] del ar S.Sigma_iw = mpi.bcast(S.Sigma_iw) for iteration_number in range(1,loops+1): SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma SK.put_Sigma(Sigma_imp = [ S.Sigma_iw ]) # put Sigma into the SumK class chemical_potential = SK.find_mu( precision = prec_mu ) # find the chemical potential for the given density S.G_iw << SK.extract_G_loc()[0] # extract the local Green function mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density()) if ((iteration_number==1)and(previous_present==False)): # Init the DC term and the real part of Sigma, if no previous run was found: dm = S.G_iw.density() SK.set_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type) S.Sigma_iw << SK.dc_imp[0]['up'][0,0] # now calculate new G0_iw to input into the solver: if (mpi.is_master_node()): # We can do a mixing of Delta in order to stabilize the DMFT iterations: S.G0_iw << S.Sigma_iw + inverse(S.G_iw) ar = HDFArchive(lda_filename+'.h5','a') if ((iteration_number>1) or (previous_present)): mpi.report("Mixing input Delta with factor %s"%delta_mix) Delta = (delta_mix * S.G0_iw.delta()) + (1.0-delta_mix) * ar['Delta_iw'] S.G0_iw << S.G0_iw + S.G0_iw.delta() - Delta ar['Delta_iw'] = S.G0_iw.delta() S.G0_iw << inverse(S.G0_iw) del ar S.G0_iw = mpi.bcast(S.G0_iw) # Solve the impurity problem: S.solve(h_loc=h_loc, **p) # solution done, do the post-processing: mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density()) # Now mix Sigma and G with factor sigma_mix, if wanted: if ((iteration_number>1) or (previous_present)): if (mpi.is_master_node()): ar = HDFArchive(lda_filename+'.h5','a') mpi.report("Mixing Sigma and G with factor %s"%sigma_mix) S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw'] S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw'] del ar S.G_iw = mpi.bcast(S.G_iw) S.Sigma_iw = mpi.bcast(S.Sigma_iw) # Write the final Sigma and G to the hdf5 archive: if (mpi.is_master_node()): ar = HDFArchive(lda_filename+'.h5','a') ar['iterations'] = previous_runs + iteration_number ar['Sigma_iw'] = S.Sigma_iw ar['G_iw'] = S.G_iw del ar dm = S.G_iw.density() # compute the density matrix of the impurity problem # Set the double counting SK.set_dc( dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type) # Save stuff into the hdf5 archive: SK.save() if mpi.is_master_node(): ar = HDFArchive("ldadmft.h5",'w') ar["G_iw"] = S.G_iw ar["Sigma_iw"] = S.Sigma_iw