#define TRIQS_ARRAYS_ENFORCE_BOUNDCHECK #include #include #include #include using triqs::arrays::make_shape; using triqs::gfs::refreq; using triqs::gfs::retime; using triqs::gfs::make_gf; double lorentzian(double w, double a){ return 2*a / (w*w + a*a) ; }; std::complex lorentzian_inverse(double t, double a){ return std::exp(-a*std::abs(t)) ; }; double theta(double x){ return x>0 ? 1.0 : ( x<0 ? 0.0 : 0.5 ) ; }; int main() { double precision=10e-10; H5::H5File file("fourier_real_time.h5",H5F_ACC_TRUNC); std::complex I(0,1); //Test on the tail: GF in frequency that is a lorentzian, with its singularity, TF and TF^-1. double wmax=10; int Nw=1001; auto Gw1 = make_gf (-wmax, wmax, Nw, make_shape(1,1),triqs::gfs::full_bins); double a = Gw1.mesh().delta() * sqrt( Gw1.mesh().size() ); for(auto const & w:Gw1.mesh()) Gw1[w]=lorentzian(w,a); Gw1.singularity()(2)=triqs::arrays::matrix{{2.0*a}}; h5_write(file,"Gw1",Gw1); // the original lorentzian auto Gt1 = inverse_fourier(Gw1); h5_write(file,"Gt1",Gt1); // the lorentzian TF : lorentzian_inverse // verification that TF(TF^-1)=Id auto Gw1b = fourier(Gt1); for(auto const & w:Gw1b.mesh()){ Gw1b[w]-=Gw1[w]; if ( std::abs(Gw1b[w](0,0)) > precision) TRIQS_RUNTIME_ERROR<<" fourier_real_time error : w="< precision) TRIQS_RUNTIME_ERROR<<" fourier_real_time error : t="< (-tmax, tmax, Nt, make_shape(1,1)); a = 2*acos(-1.) / ( Gt2.mesh().delta() *sqrt( Gt2.mesh().size() ) ); for(auto const & t:Gt2.mesh()) Gt2[t] = 0.5 *I * ( lorentzian_inverse(-t,a)*theta(-t)-lorentzian_inverse(t,a)*theta(t) ); //for(auto const & t:Gt2.mesh()) Gt2[t] = 0.5_j * ( lorentzian_inverse(-t,a)*theta(-t)-lorentzian_inverse(t,a)*theta(t) ); Gt2.singularity()(1)=triqs::arrays::matrix{{1.0}}; h5_write(file,"Gt2",Gt2); auto Gw2 = fourier(Gt2); h5_write(file,"Gw2",Gw2); for(auto const & w:Gw2.mesh()){ Gw2[w]-= 0.5/(w+a*I)+0.5/(w-a*I); //Gw2[w]-= 0.5/(w+a*1_j)+0.5/(w-a*1_j); if ( std::abs(Gw2[w](0,0)) > precision) TRIQS_RUNTIME_ERROR<<" fourier_real_time error : w="< (-tmax, tmax, Nt, make_shape(1,1)); for(auto const & t:Gt3.mesh()) Gt3[t] = 1.0 * std::cos(10*t) + 0.25*std::sin(4*t) + 0.5 * I*std::sin(8*t+0.3*acos(-1.)) ; //for(auto const & t:Gt3.mesh()) Gt3[t] = 1.0 * std::cos(10*t) + 0.25*std::sin(4*t) + 0.5_j*std::sin(8*t+0.3*acos(-1.)) ; h5_write(file,"Gt3",Gt3); auto Gw3 = fourier(Gt3); h5_write(file,"Gw3",Gw3); }