from pytriqs.applications.dft.sumk_dft import * from pytriqs.applications.dft.converters import Wien2kConverter from pytriqs.gf.local.block_gf import BlockGf from pytriqs.gf.local.gf_imfreq import GfImFreq from pytriqs.archive import * import pytriqs.utility.mpi as mpi import numpy import copy class TransBasis: '''Computates rotations into a new basis in order to make certain quantities diagonal.''' def __init__(self, SK=None, hdf_datafile=None): '''Inits the class by reading the input.''' if SK is None: # build our own SK instance if hdf_datafile is None: mpi.report("trans_basis: give SK instance or HDF filename!") return 0 Converter = Wien2kConverter(filename=hdf_datafile,repacking=False) Converter.convert_dft_input() del Converter self.SK = SumkDFT(hdf_file=hdf_datafile+'.h5',use_dft_blocks=False) else: self.SK = SK self.T = copy.deepcopy(self.SK.T[0]) self.w = numpy.identity(SK.corr_shells[0]['dim']) def __call__(self, prop_to_be_diagonal = 'eal'): '''Calculates the diagonalisation.''' if prop_to_be_diagonal == 'eal': prop = self.SK.eff_atomic_levels()[0] elif prop_to_be_diagonal == 'dm': prop = self.SK.density_matrix(method = 'using_point_integration')[0] else: mpi.report("trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.") return 0 if self.SK.SO == 0: self.eig,self.w = numpy.linalg.eigh(prop['up']) # calculate new Transformation matrix self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose() else: self.eig,self.w = numpy.linalg.eigh(prop['ud']) # calculate new Transformation matrix self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose() # measure for the 'unity' of the transformation: wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size return wsqr def rotate_gf(self,gf_to_rot): '''Rotates a given GF into the new basis.''' # build a full GF gfrotated = BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = gf_to_rot.mesh)) for block,inner in self.SK.gf_struct_sumk[0] ], make_copies = False) # transform the CTQMC blocks to the full matrix: ish = self.SK.corr_to_inequiv[0] # ish is the index of the inequivalent shell corresponding to icrsh for block, inner in self.gf_struct_solver[ish].iteritems(): for ind1 in inner: for ind2 in inner: gfrotated[self.SK.solver_to_sumk_block[ish][block]][ind1,ind2] << gf_to_rot[block][ind1,ind2] # Rotate using the matrix w for bname,gf in gfrotated: gfrotated[bname].from_L_G_R(self.w.transpose().conjugate(),gfrotated[bname],self.w) gfreturn = gf_to_rot.copy() # Put back into CTQMC basis: for block, inner in self.gf_struct_solver[ish].iteritems(): for ind1 in inner: for ind2 in inner: gfreturn[block][ind1,ind2] << gfrotated[self.SK.solver_to_sumk_block[0][block]][ind1,ind2] return gfreturn def write_trans_file(self, filename): '''Writes the new transformation into a file readable by dmftproj.''' f = open(filename,'w') Tnew = self.T.conjugate() dim = self.SK.corr_shells[0]['dim'] if self.SK.SO == 0: for i in range(dim): st = '' for k in range(dim): st += " %9.6f"%(Tnew[i,k].real) st += " %9.6f"%(Tnew[i,k].imag) for k in range(2*dim): st += " 0.0" if i < (dim-1): f.write("%s\n"%(st)) else: st1 = st.replace(' ','*',1) f.write("%s\n"%(st1)) for i in range(dim): st = '' for k in range(2*dim): st += " 0.0" for k in range(dim): st += " %9.6f"%(Tnew[i,k].real) st += " %9.6f"%(Tnew[i,k].imag) if i < (dim-1): f.write("%s\n"%(st)) else: st1 = st.replace(' ','*',1) f.write("%s\n"%(st1)) else: for i in range(dim): st = '' for k in range(dim): st += " %9.6f"%(Tnew[i,k].real) st += " %9.6f"%(Tnew[i,k].imag) if i < (dim-1): f.write("%s\n"%(st)) else: st1 = st.replace(' ','*',1) f.write("%s\n"%(st1)) f.close()