/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./tools.hpp"
#include "./gf.hpp"
#include "./meshes/product.hpp"
#include "./evaluators.hpp"
namespace triqs {
namespace gfs {
template struct cartesian_product {
using type = std::tuple;
static constexpr size_t size = sizeof...(Ms);
};
// use alias
template struct cartesian_product> : cartesian_product {};
// the mesh is simply a cartesian product
template struct gf_mesh, Opt> : mesh_product...> {
// using mesh_product< gf_mesh ... >::mesh_product< gf_mesh ... > ;
using B = mesh_product...>;
gf_mesh() = default;
gf_mesh(gf_mesh... ms) : B{std::move(ms)...} {}
};
namespace gfs_implementation {
/// --------------------------- hdf5 ---------------------------------
// h5 name : name1_x_name2_.....
template struct h5_name, matrix_valued, Opt> {
static std::string invoke() {
return triqs::tuple::fold([](std::string a, std::string b) { return a + std::string(b.empty() ? "" : "_x_") + b; },
std::make_tuple(h5_name::invoke()...), std::string());
}
};
template
struct h5_name, tensor_valued, Opt> : h5_name, matrix_valued, Opt> {};
// a slight difference with the generic case : reinterpret the data array to avoid flattening the variables
template struct h5_rw, tensor_valued, Opt> {
using g_t = gf, tensor_valued, Opt>;
static void write(h5::group gr, typename g_t::const_view_type g) {
h5_write(gr, "data", reinterpret_linear_array(g.mesh(), g().data()));
h5_write(gr, "singularity", g._singularity);
h5_write(gr, "mesh", g._mesh);
h5_write(gr, "symmetry", g._symmetry);
}
template
static void read(h5::group gr, gf_impl, tensor_valued, Opt, IsView, false> &g) {
using G_t = gf_impl, tensor_valued, Opt, IsView, false>;
h5_read(gr, "mesh", g._mesh);
auto arr = arrays::array{};
h5_read(gr, "data", arr);
auto sh = arr.shape();
arrays::mini_vector sh2;
sh2[0] = g._mesh.size();
for (int u = 1; u < R + 1; ++u) sh2[u] = sh[sizeof...(Ms) - 1 + u];
g._data = arrays::array{sh2, std::move(arr.storage())};
h5_read(gr, "singularity", g._singularity);
h5_read(gr, "symmetry", g._symmetry);
}
};
/// --------------------------- data access ---------------------------------
template
struct data_proxy, scalar_valued, Opt> : data_proxy_array, 1> {};
template
struct data_proxy, matrix_valued, Opt> : data_proxy_array, 3> {};
template
struct data_proxy, tensor_valued, Opt> : data_proxy_array, R + 1> {};
/// --------------------------- evaluator ---------------------------------
/**
* This the multi-dimensional evaluator.
* It combine the evaluator of each components, as long as they are a linear form
* eval(g, x) = \sum_i w_i g( n_i(x)) , with w some weight and n_i some points on the grid.
* Mathematically, it is written as (example of evaluating g(x1,x2,x3,x4)).
* Notation : eval(X) : g -> g(X)
* eval(x1,x2,x3,x4) (g) = eval (x1) ( binder ( g, (), (x2,x3,x4)) )
* binder( g, (), (x2,x3,x4)) (p1) = eval(x2)(binder (g,(p1),(x3,x4)))
* binder( g, (p1), (x3,x4)) (p2) = eval(x3)(binder (g,(p1,p2),(x4)))
* binder( g, (p1,p2), (x4)) (p3) = eval(x4)(binder (g,(p1,p2,p3),()))
* binder( g, (p1,p2,p3),()) (p4) = g[p1,p2,p3,p4]
*
* p_i are points on the grids, x_i points in the domain.
*
* Unrolling the formula gives (for 2 variables, with 2 points interpolation)
* eval(xa,xb) (g) = eval (xa) ( binder ( g, (), (xb)) ) =
* w_1(xa) binder ( g, (), (xb))( n_1(xa)) + w_2(xa) binder ( g, (), (xb))( n_2(xa))
* = w_1(xa) ( eval(xb)( binder ( g, (n_1(xa) ), ()))) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * binder ( g, (n_1(xa) ), ())(N_1(xb)) + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + W_2(xb) * g[n_1(xa), N_2(xb)] ) + 1 <-> 2
* which is the expected formula
*/
// implementation : G = gf, Tn : tuple of n points, Ev : tuple of evaluators (the evals functions),
// pos = counter from #args-1 =>0
// NB : the tuple is build in reverse with respect to the previous comment.
template struct binder;
template binder make_binder(G const *g, Tn tn, Ev const &ev) {
return binder{g, std::move(tn), ev};
}
template struct binder {
G const *g;
Tn tn;
Ev const &evals;
auto operator()(size_t p) const
DECL_AND_RETURN(std::get(evals)(make_binder(g, triqs::tuple::push_front(tn, p), evals)));
};
template struct binder {
G const *g;
Tn tn;
Ev const &evals;
auto operator()(size_t p) const DECL_AND_RETURN(triqs::tuple::apply(on_mesh(*g), triqs::tuple::push_front(tn, p)));
};
// now the multi d evaluator itself.
template struct evaluator, Target, Opt> {
static constexpr int arity = sizeof...(Ms);
mutable std::tuple...> evals;
struct _poly_lambda { // replace by a polymorphic lambda in C++14
template void operator()(A &a, B const &b, C const &c) const {
a = A{b, c};
}
};
template
// std::complex operator() (G const * g, Args && ... args) const {
auto operator()(G const *g, Args &&... args)
const -> decltype(std::get(evals)(make_binder(g, std::make_tuple(), evals)))
// when do we get C++14 decltype(auto) ...!?
{
static constexpr int R = sizeof...(Args);
// build the evaluators, as a tuple of ( evaluator ( mesh_component, args))
triqs::tuple::call_on_zip(_poly_lambda(), evals, g->mesh().components(), std::make_tuple(args...));
return std::get(evals)(make_binder(g, std::make_tuple(), evals));
}
};
} // gf_implementation
}
}