.. _hdf5_tut_ex1: Example 1 : A basic example -------------------------------- The simplest way to interact with HDF5 files is to use the TRIQS HDFArchive class, which represents the tree structure of the file in a way similar to a dictionary. Let us start with a very simple example :download:`[file] <./tut_ex1.py>`: .. runblock:: python from pytriqs.archive import * import numpy R = HDFArchive('myfile.h5', 'w') # Opens the file myfile.h5, in read/write mode R['mu'] = 1.29 R.create_group('S') S= R['S'] S['a'] = "a string" S['b'] = numpy.array([1,2,3]) del R,S # closing the files (optional : file is closed when the references to R and subgroup are deleted) Run this and say :: MyComputer:~>h5ls -r myfile.h5 / Group /S Group /S/a Dataset {SCALAR} /S/b Dataset {3} /mu Dataset {SCALAR} This show the tree structure of the file. We see that : * `mu` is stored at the root `/` * `S` is a subgroup, containing `a` and `b`. * For each leaf, the type (scalar or array) is given. To dump the content of the file use, for example, the following: (see the HDF5 documentation for more information) :: MyComputer:~>h5dump myfile.h5 HDF5 "myfile.h5" { GROUP "/" { GROUP "S" { DATASET "a" { DATATYPE H5T_STRING { STRSIZE H5T_VARIABLE; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SCALAR DATA { (0): "a string" } } DATASET "b" { DATATYPE H5T_STD_I32LE DATASPACE SIMPLE { ( 3 ) / ( 3 ) } DATA { (0): 1, 2, 3 } } } DATASET "mu" { DATATYPE H5T_IEEE_F64LE DATASPACE SCALAR DATA { (0): 1.29 } } } }