c ****************************************************************************** c c TRIQS: a Toolbox for Research in Interacting Quantum Systems c c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn c c TRIQS is free software: you can redistribute it and/or modify it under the c terms of the GNU General Public License as published by the Free Software c Foundation, either version 3 of the License, or (at your option) any later c version. c c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more c details. c c You should have received a copy of the GNU General Public License along with c TRIQS. If not, see . c c *****************************************************************************/ SUBROUTINE set_ang_trans C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine sets up the matrices for transformation between %% C %% the default complex spherical harmonics used in Wien2k and an %% C %% angular basis chosen, for each orbital of each atom. %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Definiton of the variables : C ---------------------------- USE common_data USE file_names USE reps USE prnt IMPLICIT NONE CHARACTER(len=150) :: fullpath CHARACTER(len=250) :: buf1 CHARACTER(len=25) :: basis_file CHARACTER(len=1) :: repsign INTEGER, DIMENSION(2*(2*lmax+1)) :: degrep REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: rtrans,itrans INTEGER :: m, l, m1, irep, isrt, ind, ind1, ind2 COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: tempmat LOGICAL :: flag C C WRITE(buf,'(a)')'=======================================' CALL printout(0) WRITE(buf,'(a)')'Basis representation for each sort.' CALL printout(0) CALL printout(0) C ================================= C Creation of the reptrans matrix : C ================================= C C For the s-electrons : no transformation is necessary (it's always the scalar 1) ALLOCATE(reptrans(1:lmax,1:nsort)) C Definition of the size of reptrans (size lmax*nsort) C Each element of this table is an "ang_bas" element, which will be defined below. DO isrt=1,nsort C ----------------------------------------------- C Case of a representation in the complex basis : C ----------------------------------------------- IF (defbasis(isrt)%typebasis(1:7)=='complex') THEN DO l=1,lmax IF (lsort(l,isrt)==0) THEN C The considered orbital is not included, all the fields are set up to default value. reptrans(l,isrt)%nreps=1 ALLOCATE(reptrans(l,isrt)%dreps(1)) ALLOCATE(reptrans(l,isrt)%transmat(1,1)) reptrans(l,isrt)%transmat=0d0 reptrans(l,isrt)%dreps(1)=0 reptrans(l,isrt)%ifmixing=.FALSE. ELSE C The considered orbital is included. reptrans(l,isrt)%nreps=1 ALLOCATE(reptrans(l,isrt)%dreps(1)) ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l)) reptrans(l,isrt)%transmat=0d0 reptrans(l,isrt)%dreps(1)=2*l+1 reptrans(l,isrt)%ifmixing=.FALSE. DO m=-l,l reptrans(l,isrt)%transmat(m,m)=1d0 ENDDO C In this case, the transformation matrix is just the Identity (hence 1 irep). C Spin up and Spin down states are not mixed in the basis representation. ENDIF ENDDO C --------------------------------------------- C Case of a representation in the cubic basis : C --------------------------------------------- ELSEIF (defbasis(isrt)%typebasis(1:5)=='cubic') THEN DO l=1,lmax IF (lsort(l,isrt)==0) THEN C The considered orbital is not included, all the fields are set up to default value. reptrans(l,isrt)%nreps=1 ALLOCATE(reptrans(l,isrt)%dreps(1)) ALLOCATE(reptrans(l,isrt)%transmat(1,1)) reptrans(l,isrt)%transmat=0d0 reptrans(l,isrt)%dreps(1)=0 reptrans(l,isrt)%ifmixing=.FALSE. ELSE C The considered orbital is included. C The cubic basis is described in the format transpose(P) where P is the usual matrix C of the eigenvectors of a matrix D ( D.P=Delta.P with Delta diagonal or P=). C In other words, each line of the file describes the coefficient of the "new basis vector" C in the basis { |l,-l,up>,...|l,l,up>,|l,-l,dn>,...|l,l,dn> }. C The transformation matrices are stored in the directory SRC_templates, the variable "fullpath" C must be updated if this prgm is copied. ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l)) ALLOCATE(rtrans(-l:l)) ALLOCATE(itrans(-l:l)) C write(*,*)fullpath IF (l==1) CALL & set_harm_file(fullpath,'case.cf_p_cubic') C standard cubic representation of p electrons : px,py,pz IF (l==2) CALL & set_harm_file(fullpath,'case.cf_d_eg_t2g') C standard cubic representation of d-electrons : dz2, dx2-y2, dxy, dxz,dyz (Wien-convention for the phase) IF (l==3) CALL & set_harm_file(fullpath,'case.cf_f_mm2') C mm2 representation of the f electrons (standard definition with complex coefficients) C C Reading of the file OPEN(iumatfile,file=fullpath,status='old') ind=-l irep=0 m = -l DO WHILE (m.le.l) READ(iumatfile,'(a)')buf1 READ(buf1(1:1),'(a)')repsign C Get rid of comment lines first IF (repsign.NE.'#') THEN IF(repsign=='*') THEN C Finding the different ireps in the new basis (a "*" means the end of an irep) irep=irep+1 degrep(irep)=m-ind+1 ind=m+1 ENDIF READ(buf1(2:250),*)(rtrans(m1),itrans(m1),m1=-l,l) C The line of the file is stored in the column of reptrans, which is temporarly "P". reptrans(l,isrt)%transmat(-l:l,m)= & CMPLX(rtrans(-l:l),itrans(-l:l)) m = m + 1 ENDIF ENDDO reptrans(l,isrt)%transmat(-l:l,-l:l)= = TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))) C reptrans%transmat = inverse(P) = , the transformation matrix from complex basis to the cubic one. C ( inverse(P) is the decomposition of the complex basis in the new basis...) reptrans(l,isrt)%nreps=irep ALLOCATE(reptrans(l,isrt)%dreps(irep)) reptrans(l,isrt)%dreps(1:irep)=degrep(1:irep) reptrans(l,isrt)%ifmixing=.FALSE. C reptrans%nreps = the total number of ireps in the cubic basis C reptrans%dreps = table of the size of the different ireps C reptrans%ifmixing = .FALSE. because Spin up and Spin down states are not mixed in the basis representation. CLOSE(iumatfile) DEALLOCATE(rtrans) DEALLOCATE(itrans) ENDIF ENDDO C --------------------------------------------------------- C Case of a representation defined in an added input file : C --------------------------------------------------------- ELSEIF (defbasis(isrt)%typebasis(1:8)=='fromfile') THEN basis_file=defbasis(isrt)%sourcefile OPEN(iumatfile,file=basis_file,status='old') DO l=1,lmax IF (lsort(l,isrt)==0) THEN C The considered orbital is not included, all the fields are set up to default value. reptrans(l,isrt)%nreps=1 ALLOCATE(reptrans(l,isrt)%dreps(1)) ALLOCATE(reptrans(l,isrt)%transmat(1,1)) reptrans(l,isrt)%transmat=0d0 reptrans(l,isrt)%dreps(1)=0 ELSE C The considered orbital is included. C The new basis is described in the format transpose(P) where P is the usual matrix C of the eigenvectors of a matrix D ( D.P=Delta.P with Delta diagonal or P=). C In other words, each line of the file describes the coefficient of the "new basis vector" C in the basis { |l,-l,up>,...|l,l,up>,|l,-l,dn>,...|l,l,dn> }. C The transformation matrices are stored in the directory SRC_templates, the variable "fullpath" C must be updated if this prgm is copied. ind=1 irep=0 ALLOCATE(tempmat(1:2*(2*l+1),1:2*(2*l+1))) ALLOCATE(rtrans(1:2*(2*l+1))) ALLOCATE(itrans(1:2*(2*l+1))) C C Reading of the file DO m=1,2*(2*l+1) READ(iumatfile,'(a)')buf1 READ(buf1(1:1),'(a)')repsign IF(repsign=='*') THEN C Finding the different ireps in the new basis (a "*" means the end of an irep) irep=irep+1 degrep(irep)=m-ind+1 ind=m+1 ENDIF READ(buf1(2:250),*)(rtrans(m1),itrans(m1), & m1=1,2*(2*l+1)) tempmat(1:2*(2*l+1),m)= = CMPLX(rtrans(1:2*(2*l+1)),itrans(1:2*(2*l+1))) C The lines of the read matrix are stored in the column of tempmat, which is then P. ENDDO C C Determination if the basis mixes Spin up and Spin down states flag=.TRUE. ind1=1 ind2=1 C The "do while" loop stops when flag=FALSE or i=2*(l+1) DO WHILE (flag.AND.(ind1.lt.2*(l+1))) flag=flag.AND. & (tempmat((2*l+1)+ind1,(2*l+1)+ind2)==tempmat(ind1,ind2)) flag=flag.AND.(tempmat((2*l+1)+ind1,ind2)==0.d0) flag=flag.AND.(tempmat(ind1,(2*l+1)+ind2)==0.d0) IF (ind2==(2*l+1)) THEN ind1=ind1+1 ind2=1 ELSE ind2=ind2+1 END IF ENDDO IF (flag) THEN C If flag=TRUE (then i=2*l+2), the tempmat matrix is block diagonal in spin with C the condition block up/up = block down/down. C The Spin up and Spin down states are not mixed in the basis representation. reptrans(l,isrt)%ifmixing=.FALSE. C reptrans%ifmixing = .FALSE. because Spin up and Spin down states are not mixed in the basis representation. C C --------------------------------------------------------------------------------------- C Interruption of the prgm if the basis description is not correct. C ------------------------- C IF (SUM(degrep(1:irep/2)).ne.(2*l+1)) THEN WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ', & 'for isrt = ',isrt,' and l = ',l,' is not recognized.' CALL printout(0) WRITE(buf,'(a,a)')'Check the structure of the file ', & defbasis(isrt)%sourcefile CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP END IF C --------------------------------------------------------------------------------------- C ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l)) reptrans(l,isrt)%transmat(-l:l,-l:l)= = tempmat(1:(2*l+1),1:(2*l+1)) reptrans(l,isrt)%transmat(-l:l,-l:l)= = TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))) C The up/up block is enough to describe the transformation (as for cubic or complex bases) C reptrans%transmat = inverse(P) = C inverse(P) is indeed the decomposition of the complex basis in the new basis. reptrans(l,isrt)%nreps=irep/2 ALLOCATE(reptrans(l,isrt)%dreps(reptrans(l,isrt)%nreps)) reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps)= = degrep(1:reptrans(l,isrt)%nreps) C reptrans%nreps = the number of ireps in the desired basis for up spin C reptrans%dreps = table of the size of the different ireps for up spin ELSE C If flag=FALSE, either the tempmat matrix either mixes Spin up and Spin down states C or the representation basis for Spin up and Spin down states differ. C In this case, it is not possible to reduce the description only to the up/up block. C The whole tempmat matrix is necessary. C C --------------------------------------------------------------------------------------- C Interruption of the prgm if the basis description is not correct. C ------------------------- C IF (SUM(degrep(1:irep)).ne.(2*(2*l+1))) THEN WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ', & 'for isrt = ',isrt,' and l = ',l,' is not recognized.' CALL printout(0) WRITE(buf,'(a,a)')'Check the structure of the file ', & defbasis(isrt)%sourcefile CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP END IF C --------------------------------------------------------------------------------------- C reptrans(l,isrt)%ifmixing=.TRUE. C reptrans%ifmixing = .TRUE. because Spin up and Spin down states are mixed in the basis representation. ALLOCATE(reptrans(l,isrt)%transmat & (1:2*(2*l+1),1:2*(2*l+1))) reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1))= = tempmat(1:2*(2*l+1),1:2*(2*l+1)) reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1))= = TRANSPOSE(CONJG(reptrans(l,isrt)%transmat & (1:2*(2*l+1),1:2*(2*l+1)))) C In this case, reptrans%transmat is a square matrix which ranges from 1 to 2*(2*l+1). C reptrans%transmat = inverse(P) = C inverse(P) is indeed the decomposition of the complex basis in the new basis. reptrans(l,isrt)%nreps=irep ALLOCATE(reptrans(l,isrt)%dreps(irep)) reptrans(l,isrt)%dreps(1:irep)=degrep(1:irep) C reptrans%nreps = the total number of ireps in the desired basis C reptrans%dreps = table of the size of the different ireps C C Restriction for simplicity in the following (and for physical reasons) : C a basis with ifmixing=.TRUE. is allowed only if the computation includes SO. IF (.not.ifSO) THEN WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ', & 'for isrt = ',isrt,' and l = ',l, & ' mixes up and down states.' CALL printout(0) WRITE(buf,'(a,a)')'This option can not ', & 'be used in a computation without Spin-Orbit.' CALL printout(0) WRITE(buf,'(a,a)')'Modify the structure of the file ', & defbasis(isrt)%sourcefile CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP END IF END IF DEALLOCATE(tempmat) DEALLOCATE(rtrans) DEALLOCATE(itrans) ENDIF ENDDO CLOSE(iumatfile) C ---------------------------------------------- C Case of a wrong definition in the input file : C ---------------------------------------------- ELSE C C --------------------------------------------------------------------------------------- C Interruption of the prgm if the file has not the expected structure. C ------------------------- C WRITE(buf,'(a,i2,a)')'The basis description for isrt = ', & isrt,' is not recognized.' CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP ENDIF C --------------------------------------------------------------------------------------- C ENDDO C C C =============================================== C Printing the basis representation information : C =============================================== C DO isrt=1,nsort IF (notinclude(isrt)) cycle CALL printout(0) WRITE(buf,'(a)')'-------------------------------------' CALL printout(0) WRITE(buf,'(a,i2,a)')'For the sort ',isrt,' :' CALL printout(0) IF (defbasis(isrt)%typebasis(1:7)=='complex') THEN C ----------------------------------------------- C Case of a representation in the complex basis : C ----------------------------------------------- WRITE(buf,'(a,i2,a)')'The atomic sort', isrt, & ' is studied in the complex basis representation.' CALL printout(0) CALL printout(0) ELSEIF (defbasis(isrt)%typebasis(1:5)=='cubic') THEN C --------------------------------------------- C Case of a representation in the cubic basis : C --------------------------------------------- WRITE(buf,'(a,i2,a)')'The atomic sort', isrt, & ' is studied in the cubic basis representation.' CALL printout(0) CALL printout(0) DO l=0,lmax C The considered orbital is not included. IF (lsort(l,isrt)==0) cycle C Case of the s-electrons IF (l==0) THEN WRITE(buf,'(a,a,(F12.6))')'The basis for s-orbital ', & 'is still',1.d0 CALL printout(0) ELSE C Case of the other orbitals WRITE(buf,'(a,i2,a,a,a)')'The basis for orbital l=',l, & ' has the following properties :' CALL printout(0) WRITE(buf,'(a,i2)')' - number of ireps : ', & reptrans(l,isrt)%nreps CALL printout(0) WRITE(buf,'(a,14(i2,x))')' - degree of each ireps : ', & reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps) CALL printout(0) WRITE(buf,'(a,a,a)')'The transformation matrix is block', & ' diagonal in the spin-space. The up/up and down/down', & ' blocks are the same and defined as :' CALL printout(0) C The transformation matrix "P = " is displayed. DO m=-l,l WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)%transmat(-l:l,m)) CALL printout(0) ENDDO CALL printout(0) ENDIF ENDDO CALL printout(0) ELSE C --------------------------------------------------------- C Case of a representation defined in an added input file : C --------------------------------------------------------- WRITE(buf,'(a,i2,a,a,a)')'The atomic sort', isrt, & ' is studied in the basis representation', & ' defined in the file ', & defbasis(isrt)%sourcefile CALL printout(0) CALL printout(0) DO l=0,lmax C The considered orbital is not included. IF (lsort(l,isrt)==0) cycle C Case of the s-electrons IF (l==0) THEN WRITE(buf,'(a,a,(F12.6))')'The basis for s-orbital ', & 'is still',1.d0 CALL printout(0) CALL printout(0) ELSE C Case of the other orbitals WRITE(buf,'(a,i2,a)')'The basis for orbital l=',l, & ' has the following properties :' CALL printout(0) WRITE(buf,'(a,i2)')' - number of ireps : ', & reptrans(l,isrt)%nreps CALL printout(0) WRITE(buf,'(a,14(i2,x))')' - degree of each ireps : ', & reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps) CALL printout(0) IF (reptrans(l,isrt)%ifmixing) THEN C If the whole matrix description is necessary. WRITE(buf,'(a,a)')'The transformation matrix mixes', & ' up and down states in the spin-space' CALL printout(0) WRITE(buf,'(a,a)') ' and is defined as : ', & '[ block 1 | block 2 ] with' CALL printout(0) WRITE(buf,'(a,a)') ' ', & '[ block 3 | block 4 ]' CALL printout(0) C The transformation matrix "P = " is displayed. WRITE(buf,'(a,i2,a)') 'For the block 1 :' CALL printout(0) DO m=1,2*l+1 WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)%transmat(1:(2*l+1),m)) CALL printout(0) ENDDO WRITE(buf,'(a,i2,a)') 'For the block 2 :' CALL printout(0) DO m=1,2*l+1 WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)%transmat(2*l+2:2*(2*l+1),m)) CALL printout(0) ENDDO WRITE(buf,'(a,i2,a)') 'For the block 3 :' CALL printout(0) DO m=2*l+2,2*(2*l+1) WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)%transmat(1:(2*l+1),m)) CALL printout(0) ENDDO WRITE(buf,'(a,i2,a)') 'For the block 4 :' CALL printout(0) DO m=2*l+2,2*(2*l+1) WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)% & transmat(2*l+2:2*(2*l+1),m)) CALL printout(0) ENDDO ELSE C If the matrix description can be reduced to its up/up block. WRITE(buf,'(a,a,a)')'The transformation matrix is block', & ' diagonal in the spin-space. The up/up and down/down', & ' blocks are the same and defined as :' CALL printout(0) C The transformation matrix "P = " is displayed. DO m=-l,l WRITE(buf,'(7(2F12.6),x)') & CONJG(reptrans(l,isrt)%transmat(-l:l,m)) CALL printout(0) ENDDO ENDIF ! End of the ifmixing if-then-else CALL printout(0) ENDIF ! End of the l if-then-else ENDDO ! End of the l loop CALL printout(0) ENDIF ! End of the basis description if-then-else ENDDO ! End of the isrt loop C RETURN END SUBROUTINE set_harm_file(fullpath,filename) C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine sets the fullpath variable %% C %% Be careful, wien_path is defined in modules.f !!! %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Definiton of the variables : C ---------------------------- USE common_data, ONLY : wien_path USE prnt IMPLICIT NONE CHARACTER(len=*) :: filename, fullpath CHARACTER(len=*), PARAMETER :: dir='SRC_templates' INTEGER :: i1, i2, i, i3 C i1=LEN_TRIM(wien_path) i2=LEN(dir) i3=LEN(filename) i=i1+i2+i3+2 IF(LEN(fullpath) < i) THEN WRITE(buf,'(a)') & 'Characters required for the basis transformation ', & ' filename is too long.' CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP STOP ENDIF fullpath=' ' fullpath(1:i)=wien_path(1:i1)//'/'//dir//'/'//filename(1:i3) END SUBROUTINE set_harm_file