/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_ARRAYS_LINALG_DET_INV_H
#define TRIQS_ARRAYS_LINALG_DET_INV_H
#include
#include
#include
#include "../impl/common.hpp"
#include "../matrix.hpp"
#include "../blas_lapack/getrf.hpp"
#include "../blas_lapack/getri.hpp"
namespace triqs { namespace arrays {
/// Error which occurs during the matrix inversion
class matrix_inverse_exception : public triqs::runtime_error {};
/**
* Lazy result of inverse(M) where M can be :
* * a matrix, a matrix_view
* * any matrix expression
* The object is lazy, it does not do any computation.
* It can be copied at no cost
* It keeps view of the object A if it a matrix, a copy if it is a formal expression.
*/
template struct inverse_lazy;
template struct inverse_lazy_impl;//debug ony
///
template struct determinant_lazy;
/// Lazy inversion
template inverse_lazy::type> inverse (A && a) { return {std::forward(a)}; }
/// Lazy computation of det
template determinant_lazy determinant (A const & a) { return determinant_lazy(a); }
// ----------------- implementation -----------------------------------------
//worker takes a contiguous view and compute the det and inverse in two steps.
//it is separated in case of multiple use (no reallocation of ipvi, etc...)
//NB a view does not resize, only its elements can be changed
template class det_and_inverse_worker {
static_assert ( (is_matrix_view::value),"class must have be a view");
typedef typename ViewType::value_type VT;
typedef matrix_view V_type;
ViewType V;
const size_t dim;
triqs::arrays::vector ipiv;
short step;
public:
det_and_inverse_worker (ViewType const & a): V(a), dim(first_dim(a)), ipiv(dim), step(0) {
if (first_dim(a)!=second_dim(a))
TRIQS_RUNTIME_ERROR<<"Inverse/Det error : non-square matrix. Dimensions are : ("< V_type fortran_view (MT const &x) { return (x.indexmap().memory_layout_is_c() ? x.transpose() : x);}
void _step1(V_type & W) {
if (step >0) return;
step=1;
info = lapack::getrf(W, ipiv);
if (info<0) throw matrix_inverse_exception() << "Inverse/Det error : failure of getrf lapack routine ";
}
void _compute_det(V_type const & W) {
if (step>1) return;
_det =1;
for (size_t i =0; i struct inverse_lazy_impl : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
public:
typedef typename std::remove_reference::type A_t;
typedef typename std::remove_const::type value_type;
typedef typename A_t::domain_type domain_type;
A a;
template inverse_lazy_impl(AA && a_):a (std::forward(a_)) {
if (first_dim(a) != second_dim(a)) TRIQS_RUNTIME_ERROR<< "Inverse : matrix is not square but of size "<< first_dim(a)<<" x "<< second_dim(a);
}
domain_type domain() const { return a.domain(); }
template value_type operator() (K0 const & k0, K1 const & k1) const { activate(); return _id->M(k0,k1); }
friend std::ostream & operator<<(std::ostream & out,inverse_lazy_impl const&x){return out<<"inverse("< M_type;
typedef matrix_view M_view_type;
M_type M;
internal_data(inverse_lazy_impl const & P):M(P.a){
det_and_inverse_worker worker(M);
worker.inverse();
}
};
friend struct internal_data;
mutable std::shared_ptr _id;
void activate() const { if (!_id) _id= std::make_shared(*this);}
};
// The general case
template
struct inverse_lazy::type>) > : inverse_lazy_impl {
template inverse_lazy(AA && a_):inverse_lazy_impl(std::forward(a_)) {}
};
// for matrix and matrix_views, we have more optimisation possible ....
template
struct inverse_lazy::type>) >:inverse_lazy_impl{
template inverse_lazy(AA && a_):inverse_lazy_impl(std::forward(a_)) {}
template // Optimized implementation of =
friend void triqs_arrays_assign_delegation (MT & lhs, inverse_lazy const & rhs) {
//std::cerr << " DELEGATING1"<< lhs <::value, "Internal error");
//std::cerr << " DELEGATING"<< lhs << std::endl;
if ((lhs.indexmap().memory_indices_layout() !=rhs.a.indexmap().memory_indices_layout())||
(lhs.data_start() != rhs.a.data_start()) || !(has_contiguous_data(lhs))) { rhs.activate(); lhs = rhs._id->M;}
else {// if M = inverse(M) with the SAME object, then we do not need to copy the data
//std::cerr << " DELEGATING"<< lhs << std::endl;
blas_lapack_tools::reflexive_qcache C(lhs);// a reflexive cache will use a temporary "regrouping" copy if and only if needed
det_and_inverse_worker W(C());// the worker to make the inversion of the lhs...
W.inverse(); // worker is working ...
//std::cerr << " DELEGATING"<< lhs << std::endl;
}
//std::cerr << " okok "<< lhs << std::endl;
}
friend std::ostream & operator<<(std::ostream & out,inverse_lazy const&x){return out<<"inverse("< struct determinant_lazy {
typedef typename A::value_type value_type;
typedef typename const_view_type_if_exists_else_type::type A_type;
A_type a;
determinant_lazy(A const & a_):a(a_){}
operator value_type() { activate(); return _id->det; }
value_type const & operator()() { activate(); return _id->det; }
friend std::ostream & operator<<(std::ostream & out, determinant_lazy const & x){ return out<<"determinant("< worker(M); det = worker.det();}
};
friend struct internal_data;
mutable std::shared_ptr _id;
void activate() const { if (!_id) _id= std::make_shared(*this);}
};
}} // namespace triqs::arrays
#endif