/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2011 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see <http://www.gnu.org/licenses/>. * ******************************************************************************/ #ifndef TRIQS_LATTICE_TIGHTBINDINGS_H #define TRIQS_LATTICE_TIGHTBINDINGS_H #include "bravais_lattice_and_brillouin_zone.hpp" namespace triqs { namespace lattice_tools { /** For tightbinding Hamiltonian with fully localised orbitals Model the ShortRangeFunctionOnBravaisLattice concept. Overlap between orbital is taken as unit matrix. */ class tight_binding { typedef std::vector<std::pair<std::vector<long>, matrix<dcomplex>>> displ_value_stack_t; displ_value_stack_t displ_value_stack; bravais_lattice bl_; public : typedef std::vector<long> arg_type; /// tight_binding (bravais_lattice const & bl) : bl_(bl) {}; /// Underlying lattice bravais_lattice const & lattice() const { return bl_;} /// Number of bands, i.e. size of the matrix t(k) size_t n_bands() const { return bl_.n_orbitals();} /** * Push_back mechanism of a pair displacement -> matrix * VectorIntType is anything from which a std::vector<long> can be constructed * MatrixDComplexType is anything from which a matrix<dcomplex> can be constructed */ template<typename VectorIntType, typename MatrixDComplexType> void push_back(VectorIntType && v, MatrixDComplexType && m) { std::vector<long> V(std::forward<VectorIntType>(v)); if (v.size() != bl_.dim()) TRIQS_RUNTIME_ERROR<<"tight_binding : displacement of incorrect size : got "<< v.size() << "instead of "<< bl_.dim(); matrix<dcomplex> M(std::forward<MatrixDComplexType>(m)); if (first_dim(M) != n_bands()) TRIQS_RUNTIME_ERROR<<"tight_binding : the first dim matrix is of size "<< first_dim(M) <<" instead of "<< n_bands(); if (second_dim(M) != n_bands()) TRIQS_RUNTIME_ERROR<<"tight_binding : the first dim matrix is of size "<< second_dim(M) <<" instead of "<< n_bands(); displ_value_stack.push_back(std::make_pair(std::move(V), std::move(M))); } void reserve(size_t n) { displ_value_stack.reserve(n);} // iterators typedef displ_value_stack_t::const_iterator const_iterator; typedef displ_value_stack_t::iterator iterator; const_iterator begin() const { return displ_value_stack.begin();} const_iterator end() const { return displ_value_stack.end();} iterator begin() { return displ_value_stack.begin();} iterator end() { return displ_value_stack.end();} }; /** Factorized version of hopping (for speed) k_in[:,n] is the nth vector In the result, R[:,:,n] is the corresponding hopping t(k) */ array_view <dcomplex,3> hopping_stack (tight_binding const & TB, array_view<double,2> const & k_stack); // not optimal ordering here std::pair<array<double,1>, array<double,2> > dos(tight_binding const & TB, size_t nkpts, size_t neps); std::pair<array<double,1>, array<double,1> > dos_patch(tight_binding const & TB, const array<double,2> & triangles, size_t neps, size_t ndiv); array_view<double,2> energies_on_bz_path(tight_binding const & TB, K_view_type K1, K_view_type K2, size_t n_pts); array_view<double,2> energies_on_bz_grid(tight_binding const & TB, size_t n_pts); }} #endif