/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./local/no_tail.hpp"
#include "./meshes/matsubara_freq.hpp"
#include "./evaluators.hpp"
namespace triqs {
namespace gfs {
struct imfreq {};
template struct gf_mesh : matsubara_freq_mesh {
template gf_mesh(T &&... x) : matsubara_freq_mesh(std::forward(x)...) {}
//using matsubara_freq_mesh::matsubara_freq_mesh;
};
namespace gfs_implementation {
// singularity
template <> struct singularity {
using type = local::tail;
};
template <> struct singularity {
using type = local::tail;
};
// h5 name
template struct h5_name {
static std::string invoke() { return "ImFreq"; }
};
/// --------------------------- evaluator ---------------------------------
// simple evaluation : take the point on the grid...
template <> struct evaluator_fnt_on_mesh {
long n;
double w;
evaluator_fnt_on_mesh() = default;
template evaluator_fnt_on_mesh(MeshType const &m, long p) { n = p; w=1; }
template evaluator_fnt_on_mesh(MeshType const &m, matsubara_freq const &p) {
if ((p.n >= m.first_index()) && (p.n < m.size()+m.first_index())) {w=1; n =p.n;}
else {w=0; n=0;}
}
template auto operator()(F const &f) const DECL_AND_RETURN(w*f(n));
};
// ------------- evaluator -------------------
// handle the case where the matsu. freq is out of grid...
template struct evaluator {
static constexpr int arity = 1;
private:
template int sh(G const * g) const { return (g->mesh().domain().statistic == Fermion ? 1 : 0);}
// dispatch for 2x2 cases : matrix/scalar and tail/no_tail ( true means no_tail)
template
std::complex _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::false_type) const {
if (g->mesh().positive_only()){//only positive Matsubara frequencies
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && ((-f.n-sh(g)) < g->mesh().size())) return conj((*g)[-f.n-sh(g)]);
}
else{
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size()+g->mesh().first_index())) return (*g)[f.n];
}
return g->singularity().evaluate(f)(0, 0);
}
template
std::complex _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::true_type) const {
if (g->mesh().positive_only()){//only positive Matsubara frequencies
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && ((-f.n-sh(g)) < g->mesh().size())) return conj((*g)[-f.n-sh(g)]);
}
else{
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size()+g->mesh().first_index())) return (*g)[f.n];
}
return 0;
}
template
arrays::matrix_const_view> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::false_type) const {
if (g->mesh().positive_only()){//only positive Matsubara frequencies
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && ((-f.n-sh(g)) < g->mesh().size()))
return arrays::matrix>{conj((*g)[-f.n-sh(g)]())};
}
else{
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size()+g->mesh().first_index())) return (*g)[f.n];
}
return g->singularity().evaluate(f);
}
template
arrays::matrix_const_view> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::true_type) const {
if (g->mesh().positive_only()){//only positive Matsubara frequencies
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && ((-f.n-sh(g)) < g->mesh().size()))
return arrays::matrix>{conj((*g)[-f.n-sh(g)]())};
}
else{
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size()+g->mesh().first_index())) return (*g)[f.n];
}
auto r = arrays::matrix>{get_target_shape(*g)};
r() = 0;
return r;
}
// does not work on gcc 4.8.1 ???
/* template
auto operator()(G const *g, matsubara_freq const &f) const
DECL_AND_RETURN(_call_impl(g, f, Target{}, std::integral_constant::value>{}));
*/
public:
template
typename std::conditional::value, arrays::matrix_const_view>,
std::complex>::type
operator()(G const *g, matsubara_freq const &f) const {
return _call_impl(g, f, Target{}, std::integral_constant::value>{});
}
// int -> replace by matsubara_freq
template auto operator()(G const *g, int n) const DECL_AND_RETURN((*g)(matsubara_freq(n,g->mesh().domain().beta,g->mesh().domain().statistic)));
#ifdef __clang__
// to generate a clearer error message ? . Only ok on clang ?
template struct error {
static_assert(n > 0, "Green function cannot be evaluated on a complex number !");
};
template error<0> operator()(G const *g, std::complex) const {
return {};
}
#endif
template typename G::singularity_t const &operator()(G const *g, freq_infty const &) const {
return g->singularity();
}
};
/// --------------------------- data access ---------------------------------
template struct data_proxy : data_proxy_array, 3> {};
template struct data_proxy : data_proxy_array, 1> {};
} // gfs_implementation
// specific operations (for legacy python code).
// +=, -= with a matrix
inline void operator+=(gf_view g, arrays::matrix> m) {
for (int u = 0; u < first_dim(g.data()); ++u) g.data()(u, arrays::ellipsis()) += m;
g.singularity()(0) += m;
}
inline void operator-=(gf_view g, arrays::matrix> m) {
for (int u = 0; u < first_dim(g.data()); ++u) g.data()(u, arrays::ellipsis()) -= m;
g.singularity()(0) -= m;
}
}
}