################################################################################ # # TRIQS: a Toolbox for Research in Interacting Quantum Systems # # Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola # # TRIQS is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # TRIQS. If not, see . # ################################################################################ from types import * import numpy from pytriqs.gf.local import * import pytriqs.utility.mpi as mpi from symmetry import * from sumk_dft import SumkDFT class SumkDFTTools(SumkDFT): """Extends the SumkDFT class with some tools for analysing the data.""" def __init__(self, hdf_file, h_field = 0.0, use_dft_blocks = False, dft_data = 'dft_input', symmcorr_data = 'dft_symmcorr_input', parproj_data = 'dft_parproj_input', symmpar_data = 'dft_symmpar_input', bands_data = 'dft_bands_input', transp_data = 'dft_transp_input', misc_data = 'dft_misc_input'): SumkDFT.__init__(self, hdf_file=hdf_file, h_field=h_field, use_dft_blocks=use_dft_blocks, dft_data=dft_data, symmcorr_data=symmcorr_data, parproj_data=parproj_data, symmpar_data=symmpar_data, bands_data=bands_data, transp_data=transp_data, misc_data=misc_data) def read_parproj_input_from_hdf(self): """ Reads the data for the partial projectors from the HDF file """ things_to_read = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv'] value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read) return value_read def check_input_dos(self, om_min, om_max, n_om, beta=10, broadening=0.01): delta_om = (om_max-om_min)/(n_om-1) om_mesh = numpy.zeros([n_om],numpy.float_) for i in range(n_om): om_mesh[i] = om_min + delta_om * i DOS = {} for sp in self.spin_block_names[self.SO]: DOS[sp] = numpy.zeros([n_om],numpy.float_) DOSproj = [ {} for ish in range(self.n_inequiv_shells) ] DOSproj_orb = [ {} for ish in range(self.n_inequiv_shells) ] for ish in range(self.n_inequiv_shells): for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]: dim = self.corr_shells[self.inequiv_to_corr[ish]]['dim'] DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_) DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_) # init: Gloc = [] for icrsh in range(self.n_corr_shells): spn = self.spin_block_names[self.corr_shells[icrsh]['SO']] glist = lambda : [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_sumk[icrsh]] Gloc.append(BlockGf(name_list = spn, block_list = glist(),make_copies=False)) for icrsh in range(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero for ik in range(self.n_k): G_latt_w=self.lattice_gf(ik=ik,mu=self.chemical_potential,iw_or_w="w",broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False) G_latt_w *= self.bz_weights[ik] # non-projected DOS for iom in range(n_om): for bname,gf in G_latt_w: asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535) DOS[bname][iom] += asd for icrsh in range(self.n_corr_shells): tmp = Gloc[icrsh].copy() for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_w[bname],gf) # downfolding G Gloc[icrsh] += tmp if self.symm_op != 0: Gloc = self.symmcorr.symmetrize(Gloc) if self.use_rotations: for icrsh in range(self.n_corr_shells): for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal') # Gloc can now also be used to look at orbitally resolved quantities for ish in range(self.n_inequiv_shells): for bname,gf in Gloc[self.inequiv_to_corr[ish]]: # loop over spins for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535) # output: if mpi.is_master_node(): for sp in self.spin_block_names[self.SO]: f=open('DOS%s.dat'%sp, 'w') for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOS[sp][i])) f.close() for ish in range(self.n_inequiv_shells): f=open('DOS%s_proj%s.dat'%(sp,ish),'w') for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOSproj[ish][sp][i])) f.close() for i in range(self.corr_shells[self.inequiv_to_corr[ish]]['dim']): for j in range(i,self.corr_shells[self.inequiv_to_corr[ish]]['dim']): Fname = 'DOS'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat' f=open(Fname,'w') for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j])) f.close() def dos_partial(self,broadening=0.01): """calculates the orbitally-resolved DOS""" assert hasattr(self,"Sigma_imp_w"), "dos_partial: Set Sigma_imp_w first." value_read = self.read_parproj_input_from_hdf() if not value_read: return value_read if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data) mu = self.chemical_potential gf_struct_proj = [ [ (sp, range(self.shells[i]['dim'])) for sp in self.spin_block_names[self.SO] ] for i in range(self.n_shells) ] Gproj = [BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh)) for block,inner in gf_struct_proj[ish] ], make_copies = False ) for ish in range(self.n_shells)] for ish in range(self.n_shells): Gproj[ish].zero() mesh = [x.real for x in self.Sigma_imp_w[0].mesh] n_om = len(mesh) DOS = {} for sp in self.spin_block_names[self.SO]: DOS[sp] = numpy.zeros([n_om],numpy.float_) DOSproj = [ {} for ish in range(self.n_shells) ] DOSproj_orb = [ {} for ish in range(self.n_shells) ] for ish in range(self.n_shells): for sp in self.spin_block_names[self.SO]: dim = self.shells[ish]['dim'] DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_) DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_) ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening) G_latt_w *= self.bz_weights[ik] # non-projected DOS for iom in range(n_om): for bname,gf in G_latt_w: DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) #projected DOS: for ish in range(self.n_shells): tmp = Gproj[ish].copy() for ir in range(self.n_parproj[ish]): for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_w[bname],gf,shells='all',ir=ir) Gproj[ish] += tmp # collect data from mpi: for bname in DOS: DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y) for ish in range(self.n_shells): Gproj[ish] << mpi.all_reduce(mpi.world, Gproj[ish], lambda x,y : x+y) mpi.barrier() if self.symm_op != 0: Gproj = self.symmpar.symmetrize(Gproj) # rotation to local coord. system: if self.use_rotations: for ish in range(self.n_shells): for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all') for ish in range(self.n_shells): for bname,gf in Gproj[ish]: for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535) if mpi.is_master_node(): # output to files for sp in self.spin_block_names[self.SO]: f=open('./DOScorr%s.dat'%sp, 'w') for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOS[sp][i])) f.close() # partial for ish in range(self.n_shells): f=open('DOScorr%s_proj%s.dat'%(sp,ish),'w') for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOSproj[ish][sp][i])) f.close() for i in range(self.shells[ish]['dim']): for j in range(i,self.shells[ish]['dim']): Fname = './DOScorr'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat' f=open(Fname,'w') for iom in range(n_om): f.write("%s %s\n"%(mesh[iom],DOSproj_orb[ish][sp][iom,i,j])) f.close() def spaghettis(self,broadening,shift=0.0,plot_range=None, ishell=None, invert_Akw=False, fermi_surface=False): """ Calculates the correlated band structure with a real-frequency self energy.""" assert hasattr(self,"Sigma_imp_w"), "spaghettis: Set Sigma_imp_w first." things_to_read = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all'] value_read = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=things_to_read) if not value_read: return value_read if fermi_surface: ishell=None # FIXME CAN REMOVE? # print hamiltonian for checks: #========================================= # calculate A(k,w): mu = self.chemical_potential spn = self.spin_block_names[self.SO] # init DOS: mesh = [x.real for x in self.Sigma_imp_w[0].mesh] n_om = len(mesh) if plot_range is None: om_minplot = mesh[0]-0.001 om_maxplot = mesh[n_om-1] + 0.001 else: om_minplot = plot_range[0] om_maxplot = plot_range[1] if ishell is None: Akw = {} for sp in spn: Akw[sp] = numpy.zeros([self.n_k, n_om ],numpy.float_) else: Akw = {} for sp in spn: Akw[sp] = numpy.zeros([self.shells[ishell]['dim'],self.n_k, n_om ],numpy.float_) if fermi_surface: om_minplot = -2.0*broadening om_maxplot = 2.0*broadening Akw = {} for sp in spn: Akw[sp] = numpy.zeros([self.n_k,1],numpy.float_) if not ishell is None: GFStruct_proj = [ (sp, range(self.shells[ishell]['dim'])) for sp in spn ] Gproj = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh)) for block,inner in GFStruct_proj ], make_copies = False) Gproj.zero() for ik in range(self.n_k): G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening) if ishell is None: # non-projected A(k,w) for iom in range(n_om): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if fermi_surface: for bname,gf in G_latt_w: Akw[bname][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (mesh[1]-mesh[0]) else: for bname,gf in G_latt_w: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) Akw[bname][ik,iom] += ik*shift # shift Akw for plotting in xmgrace -- REMOVE else: # projected A(k,w): Gproj.zero() tmp = Gproj.copy() for ir in range(self.n_parproj[ishell]): for bname,gf in tmp: tmp[bname] << self.downfold(ik,ishell,bname,G_latt_w[bname],gf,shells='all',ir=ir) Gproj += tmp # FIXME NEED TO READ IN ROTMAT_ALL FROM PARPROJ SUBGROUP, REPLACE ROTLOC WITH ROTLOC_ALL # TO BE FIXED: # rotate to local frame #if (self.use_rotations): # for bname,gf in Gproj: Gproj[bname] << self.rotloc(0,gf,direction='toLocal') for iom in range(n_om): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): for ish in range(self.shells[ishell]['dim']): for ibn in spn: Akw[ibn][ish,ik,iom] = Gproj[ibn].data[iom,ish,ish].imag/(-3.1415926535) # END k-LOOP if mpi.is_master_node(): if ishell is None: for ibn in spn: # loop over GF blocs: if invert_Akw: maxAkw=Akw[ibn].max() minAkw=Akw[ibn].min() # open file for storage: if fermi_surface: f=open('FS_'+ibn+'.dat','w') else: f=open('Akw_'+ibn+'.dat','w') for ik in range(self.n_k): if fermi_surface: if invert_Akw: Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw) f.write('%s %s\n'%(ik,Akw[ibn][ik,0])) else: for iom in range(n_om): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if invert_Akw: Akw[ibn][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,iom] - maxAkw) if shift > 0.0001: f.write('%s %s\n'%(mesh[iom],Akw[ibn][ik,iom])) else: f.write('%s %s %s\n'%(ik,mesh[iom],Akw[ibn][ik,iom])) f.write('\n') f.close() else: for ibn in spn: for ish in range(self.shells[ishell]['dim']): if invert_Akw: maxAkw=Akw[ibn][ish,:,:].max() minAkw=Akw[ibn][ish,:,:].min() f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w') for ik in range(self.n_k): for iom in range(n_om): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if invert_Akw: Akw[ibn][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ish,ik,iom] - maxAkw) if shift > 0.0001: f.write('%s %s\n'%(mesh[iom],Akw[ibn][ish,ik,iom])) else: f.write('%s %s %s\n'%(ik,mesh[iom],Akw[ibn][ish,ik,iom])) f.write('\n') f.close() def partial_charges(self,beta=40): """Calculates the orbitally-resolved density matrix for all the orbitals considered in the input. The theta-projectors are used, hence case.parproj data is necessary""" value_read = self.read_parproj_input_from_hdf() if not value_read: return value_read if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data) # Density matrix in the window spn = self.spin_block_names[self.SO] ntoi = self.spin_names_to_ind[self.SO] self.dens_mat_window = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)] for isp in range(len(spn)) ] # init the density matrix mu = self.chemical_potential GFStruct_proj = [ [ (sp, range(self.shells[i]['dim'])) for sp in spn ] for i in range(self.n_shells) ] if hasattr(self,"Sigma_imp_iw"): Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp_iw[0].mesh)) for block,inner in GFStruct_proj[ish] ], make_copies = False) for ish in range(self.n_shells)] beta = self.Sigma_imp_iw[0].mesh.beta else: Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta)) for block,inner in GFStruct_proj[ish] ], make_copies = False) for ish in range(self.n_shells)] for ish in range(self.n_shells): Gproj[ish].zero() ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): G_latt_iw = self.lattice_gf(ik=ik,mu=mu,iw_or_w="iw",beta=beta) G_latt_iw *= self.bz_weights[ik] for ish in range(self.n_shells): tmp = Gproj[ish].copy() for ir in range(self.n_parproj[ish]): for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_iw[bname],gf,shells='all',ir=ir) Gproj[ish] += tmp #collect data from mpi: for ish in range(self.n_shells): Gproj[ish] << mpi.all_reduce(mpi.world, Gproj[ish], lambda x,y : x+y) mpi.barrier() # Symmetrisation: if self.symm_op != 0: Gproj = self.symmpar.symmetrize(Gproj) for ish in range(self.n_shells): # Rotation to local: if self.use_rotations: for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all') isp = 0 for bname,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[bname]) self.dens_mat_window[isp][ish] = Gproj[ish].density()[bname] isp+=1 # add Density matrices to get the total: dens_mat = [ [ self.dens_mat_below[ntoi[spn[isp]]][ish]+self.dens_mat_window[isp][ish] for ish in range(self.n_shells)] for isp in range(len(spn)) ] return dens_mat def print_hamiltonian(self): """ Print Hamiltonian for checks.""" if self.SP == 1 and self.SO == 0: f1=open('hamup.dat','w') f2=open('hamdn.dat','w') for ik in range(self.n_k): for i in range(self.n_orbitals[ik,0]): f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real)) for i in range(self.n_orbitals[ik,1]): f2.write('%s %s\n'%(ik,self.hopping[ik,1,i,i].real)) f1.write('\n') f2.write('\n') f1.close() f2.close() else: f=open('ham.dat','w') for ik in range(self.n_k): for i in range(self.n_orbitals[ik,0]): f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real)) f.write('\n') f.close() # ----------------- transport ----------------------- def read_transport_input_from_hdf(self): """ Reads the data for transport calculations from the HDF file """ thingstoread = ['band_window_optics','velocities_k'] self.read_input_from_hdf(subgrp=self.transp_data,things_to_read = thingstoread) thingstoread = ['band_window','lattice_angles','lattice_constants','lattice_type','n_symmetries','rot_symmetries'] self.read_input_from_hdf(subgrp=self.misc_data,things_to_read = thingstoread) def cellvolume(self, lattice_type, lattice_constants, latticeangle): """ Calculate cell volume: volumecc conventional cell, volumepc, primitive cell. """ a = lattice_constants[0] b = lattice_constants[1] c = lattice_constants[2] c_al = numpy.cos(latticeangle[0]) c_be = numpy.cos(latticeangle[1]) c_ga = numpy.cos(latticeangle[2]) volumecc = a * b * c * numpy.sqrt(1 + 2 * c_al * c_be * c_ga - c_al ** 2 - c_be * 82 - c_ga ** 2) det = {"P":1, "F":4, "B":2, "R":3, "H":1, "CXY":2, "CYZ":2, "CXZ":2} volumepc = volumecc / det[lattice_type] return volumecc, volumepc def transport_distribution(self, directions=['xx'], energy_window=None, Om_mesh=[0.0], beta=40, with_Sigma=False, n_om=None, broadening=0.01): """ calculate Tr A(k,w) v(k) A(k, w+Om) v(k). energy_window: regime for omega integral Om_mesh: mesh for optic conductivitity. Om_mesh is repinned to the self-energy mesh! directions: list of directions: xx,yy,zz,xy,yz,zx. with_Sigma: Use Sigma_w = 0 if False (In this case it is necessary to specifiy the energywindow (energy_window), the number of omega points (n_om) in the window and the broadening (broadening)). """ # Check if wien converter was called and read transport subgroup form hdf file if mpi.is_master_node(): ar = HDFArchive(self.hdf_file, 'a') if not (self.transp_data in ar): raise IOError, "transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." %self.transp_data self.read_transport_input_from_hdf() n_inequiv_spin_blocks = self.SP + 1 - self.SO # up and down are equivalent if SP = 0 self.directions = directions dir_to_int = {'x':0, 'y':1, 'z':2} # k-dependent-projections. assert self.k_dep_projection == 1, "transport_distribution: k dependent projection is not implemented!" # calculate A(k,w) ####################################### # Define mesh for Greens function and in the specified energy window if (with_Sigma == True): self.omega = numpy.array([round(x.real,12) for x in self.Sigma_imp_w[0].mesh]) mesh = None mu = self.chemical_potential n_om = len(self.omega) print "Using omega mesh provided by Sigma!" if energy_window is not None: # Find according window in Sigma mesh ioffset = numpy.sum(self.omega < energy_window[0]) self.omega = self.omega[numpy.logical_and(self.omega >= energy_window[0], self.omega <= energy_window[1])] n_om = len(self.omega) # Truncate Sigma to given omega window # In the future there should be an option in gf to manipulate the mesh (e.g. truncate) directly. # For we stick with this: for icrsh in range(self.n_corr_shells): Sigma_save = self.Sigma_imp_w[icrsh].copy() spn = self.spin_block_names[self.corr_shells[icrsh]['SO']] glist = lambda : [ GfReFreq(indices = inner, window=(self.omega[0], self.omega[-1]),n_points=n_om) for block, inner in self.gf_struct_sumk[icrsh]] self.Sigma_imp_w[icrsh] = BlockGf(name_list = spn, block_list = glist(),make_copies=False) for i,g in self.Sigma_imp_w[icrsh]: for iL in g.indices: for iR in g.indices: for iom in xrange(n_om): g.data[iom,iL,iR] = Sigma_save[i].data[ioffset+iom,iL,iR] else: assert n_om is not None, "transport_distribution: Number of omega points (n_om) needed to calculate transport distribution!" assert energy_window is not None, "transport_distribution: Energy window needed to calculate transport distribution!" assert broadening != 0.0 and broadening is not None, "transport_distribution: Broadening necessary to calculate transport distribution!" self.omega = numpy.linspace(energy_window[0],energy_window[1],n_om) mesh = [energy_window[0], energy_window[1], n_om] mu = 0.0 # Check if energy_window is sufficiently large if (abs(self.fermi_dis(self.omega[0]*beta)*self.fermi_dis(-self.omega[0]*beta)) > 1e-5 or abs(self.fermi_dis(self.omega[-1]*beta)*self.fermi_dis(-self.omega[-1]*beta)) > 1e-5): print "\n####################################################################" print "transport_distribution: WARNING - energy window might be too narrow!" print "####################################################################\n" # Define mesh for optic conductivity d_omega = round(numpy.abs(self.omega[0] - self.omega[1]), 12) iOm_mesh = numpy.array([int(Om / d_omega) for Om in Om_mesh]) self.Om_mesh = iOm_mesh * d_omega if mpi.is_master_node(): print "Chemical potential: ", mu print "Using n_om = %s points in the energy_window [%s,%s]"%(n_om, self.omega[0], self.omega[-1]), print "where the omega vector is:" print self.omega print "Calculation requested for Omega mesh: ", numpy.array(Om_mesh) print "Omega mesh automatically repinned to: ", self.Om_mesh self.Gamma_w = {direction: numpy.zeros((len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions} # Sum over all k-points ikarray = numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): # Calculate G_w for ik and initialize A_kw G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta, broadening=broadening, mesh=mesh, with_Sigma=with_Sigma) A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_) for isp in range(n_inequiv_spin_blocks)] for isp in range(n_inequiv_spin_blocks): # Obtain A_kw from G_w (swapaxes is used to have omega in the 3rd dimension) A_kw[isp].real = -copy.deepcopy(G_w[self.spin_block_names[self.SO][isp]].data.swapaxes(0,1).swapaxes(1,2)).imag / numpy.pi b_min = max(self.band_window[isp][ik, 0], self.band_window_optics[isp][ik, 0]) b_max = min(self.band_window[isp][ik, 1], self.band_window_optics[isp][ik, 1]) A_i = slice(b_min - self.band_window[isp][ik, 0], b_max - self.band_window[isp][ik, 0] + 1) v_i = slice(b_min - self.band_window_optics[isp][ik, 0], b_max - self.band_window_optics[isp][ik, 0] + 1) # loop over all symmetries for R in self.rot_symmetries: # get transformed velocity under symmetry R vel_R = copy.deepcopy(self.velocities_k[isp][ik]) for nu1 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1): for nu2 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1): vel_R[nu1][nu2][:] = numpy.dot(R, vel_R[nu1][nu2][:]) # calculate Gamma_w for each direction from the velocities vel_R and the spectral function A_kw for direction in self.directions: for iw in xrange(n_om): for iq in range(len(self.Om_mesh)): if(iw + iOm_mesh[iq] >= n_om): continue self.Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]], A_kw[isp][A_i, A_i, iw]), vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw + iOm_mesh[iq]]).trace().real * self.bz_weights[ik]) for direction in self.directions: self.Gamma_w[direction] = (mpi.all_reduce(mpi.world, self.Gamma_w[direction], lambda x, y : x + y) / self.cellvolume(self.lattice_type, self.lattice_constants, self.lattice_angles)[1] / self.n_symmetries) def transport_coefficient(self, direction, iq=0, n=0, beta=40): """ calculates the transport coefficients A_n in a given direction and for a given Omega. (see documentation) A_1 is set to nan if requested for Omega != 0.0 iq: index of Omega point in Om_mesh direction: 'xx','yy','zz','xy','xz','yz' """ if not (mpi.is_master_node()): return assert hasattr(self,'Gamma_w'), "transport_coefficient: Run transport_distribution first or load data from h5!" A = 0.0 omegaT = self.omega * beta d_omega = self.omega[1] - self.omega[0] if (self.Om_mesh[iq] == 0.0): for iw in xrange(self.Gamma_w[direction].shape[1]): A += self.Gamma_w[direction][iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw]) * numpy.float(omegaT[iw])**n * d_omega elif (n == 0.0): for iw in xrange(self.Gamma_w[direction].shape[1]): A += (self.Gamma_w[direction][iq, iw] * (self.fermi_dis(omegaT[iw]) - self.fermi_dis(omegaT[iw] + self.Om_mesh[iq] * beta)) / (self.Om_mesh[iq] * beta) * d_omega) else: A = numpy.nan return A * numpy.pi * (2.0-self.SP) def conductivity_and_seebeck(self, beta=40): """ Calculates the Seebeck coefficient and the conductivity for a given Gamma_w """ if not (mpi.is_master_node()): return assert hasattr(self,'Gamma_w'), "conductivity_and_seebeck: Run transport_distribution first or load data from h5!" n_q = self.Gamma_w[self.directions[0]].shape[0] A0 = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions} A1 = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions} self.seebeck = {direction: numpy.nan for direction in self.directions} self.optic_cond = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions} for direction in self.directions: for iq in xrange(n_q): A0[direction][iq] = self.transport_coefficient(direction, iq=iq, n=0, beta=beta) A1[direction][iq] = self.transport_coefficient(direction, iq=iq, n=1, beta=beta) print "A_0 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A0[direction][iq]) print "A_1 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A1[direction][iq]) if ~numpy.isnan(A1[direction][iq]): # Seebeck is overwritten if there is more than one Omega = 0 in Om_mesh self.seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17 self.optic_cond[direction] = A0[direction] * 10700.0 for iq in xrange(n_q): print "Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, self.Om_mesh[iq], self.optic_cond[direction][iq]) if not (numpy.isnan(A1[direction][iq])): print "Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" % (direction, self.seebeck[direction]) def fermi_dis(self, x): """ fermi distribution at x = omega * beta """ return 1.0/(numpy.exp(x)+1)