/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_DATA_PROXIES_H #define TRIQS_GF_DATA_PROXIES_H #include #include #include #include "../arrays/matrix_tensor_proxy.hpp" //#define TRIQS_GF_DATA_PROXIES_WITH_SIMPLE_VIEWS namespace triqs { namespace gfs { //---------------------------- common stuff for array proxies ---------------------------------- template struct data_proxy_array_common { using storage_t = arrays::array; using storage_view_t = typename storage_t::view_type; using storage_const_view_t = typename storage_t::const_view_type; // from the shape of the mesh and the target, make the shape of the array. default is to glue them template static auto join_shape(S1 const& s1, S2 const& s2) RETURN(join(s1, s2)); template static void assign_to_scalar (S & data, RHS && rhs) { data() = std::forward(rhs);} template static void rebind(ST& data, RHS&& rhs) { data.rebind(rhs.data()); } }; //---------------------------- generic case array of dim R---------------------------------- template struct data_proxy_array : data_proxy_array_common { using B = data_proxy_array_common; /// The data access #ifdef TRIQS_GF_DATA_PROXIES_WITH_SIMPLE_VIEWS template auto operator()(S& data, long i) const DECL_AND_RETURN(data(i, arrays::ellipsis())); #else auto operator()(typename B::storage_t& data, long i) const DECL_AND_RETURN(arrays::make_tensor_proxy(data, i)); auto operator()(typename B::storage_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_tensor_proxy(data, i)); auto operator()(typename B::storage_view_t& data, long i) const DECL_AND_RETURN(arrays::make_tensor_proxy(data, i)); auto operator()(typename B::storage_view_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_tensor_proxy(data, i)); auto operator()(typename B::storage_const_view_t& data, long i) const DECL_AND_RETURN(arrays::make_const_tensor_proxy(data, i)); auto operator()(typename B::storage_const_view_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_tensor_proxy(data, i)); #endif }; //---------------------------- 3d array : returns matrices in this case ! ---------------------------------- template struct data_proxy_array : data_proxy_array_common { using B = data_proxy_array_common; #ifdef TRIQS_GF_DATA_PROXIES_WITH_SIMPLE_VIEWS template auto operator()(S & data, long i) const RETURN(make_matrix_view(data(i, arrays::ellipsis()))); #else /// The data access auto operator()(typename B::storage_t& data, long i) const DECL_AND_RETURN(arrays::make_matrix_proxy(data, i)); auto operator()(typename B::storage_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_matrix_proxy(data, i)); auto operator()(typename B::storage_view_t& data, long i) const DECL_AND_RETURN(arrays::make_matrix_proxy(data, i)); auto operator()(typename B::storage_view_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_matrix_proxy(data, i)); auto operator()(typename B::storage_const_view_t& data, long i) const DECL_AND_RETURN(arrays::make_const_matrix_proxy(data, i)); auto operator()(typename B::storage_const_view_t const& data, long i) const DECL_AND_RETURN(arrays::make_const_matrix_proxy(data, i)); #endif }; //---------------------------- 1d array ---------------------------------- template struct data_proxy_array : data_proxy_array_common { template AUTO_DECL operator()(S& data, long i) const RETURN(data(i)); }; //---------------------------- multi variable ---------------------------------- template struct data_proxy_array_multivar : data_proxy_array_common { // using the standard technique from tuple::apply with a sequence template AUTO_DECL _impl(S& data, Tu const& tu, std14::index_sequence) const RETURN(data(std::get(tu)..., arrays::ellipsis())); template AUTO_DECL operator()(S& data, Tu const& tu) const RETURN(_impl(data, tu, triqs::tuple::_get_seq())); }; //---------------------------- multi variable ---------------------------------- template struct data_proxy_array_multivar_matrix_valued : data_proxy_array_common { // using the standard technique from tuple::apply with a sequence template AUTO_DECL _impl(S& data, Tu const& tu, std14::index_sequence) const RETURN(make_matrix_view(data(std::get(tu)..., arrays::range(), arrays::range()))); template AUTO_DECL operator()(S& data, Tu const& tu) const RETURN(_impl(data, tu, triqs::tuple::_get_seq())); }; //---------------------------- vector ---------------------------------- template struct view_proxy : public V { view_proxy() : V(typename V::regular_type()) {} view_proxy(V const &v) : V(v){}; view_proxy(view_proxy const & p) : V(p) {}; template explicit view_proxy(Args && ... args) : V (std::forward(args)...){} view_proxy & operator = ( view_proxy const & cp ) { this->rebind(cp); return *this;} view_proxy & operator = ( V const & v ) { this->rebind(v); return *this;} using V::operator=; //template view_proxy & operator = (X && x) { V::operator=( std::forward(x) ); return *this;} }; template struct data_proxy_vector { using Tv = typename T::view_type; using Tcv = typename T::const_view_type; /// The storage using storage_t = std::vector; using storage_view_t = std::vector>; using storage_const_view_t = std::vector>; /// The data access template AUTO_DECL operator()(S& data, size_t i) const RETURN(data[i]); template static void assign_to_scalar (S & data, RHS && rhs) {for (size_t i =0; i static void rebind(ST& data, RHS&& rhs) { data.clear(); for (auto & x : rhs.data()) data.push_back(x);} }; //---------------------------- lambda ---------------------------------- template struct data_proxy_lambda { /// The storage using storage_t = F; using storage_view_t = F; using storage_const_view_t = F; /// The data access template AUTO_DECL operator()(S& data, I const& ...i) const RETURN(data(i...)); template static void assign_to_scalar (S & data, RHS && rhs) = delete; template static void rebind(ST& data, RHS&& rhs) = delete; }; }} #endif