op_with_no_indices = 1*C^+() + 1*C() + -1*C^+()C() op_with_many_indices = 1*C^+(3,15,b,0,-5) + 1*C(1,2,a,1,-2) Anticommutators: {1*C^+(1), 1*C(1)} = 1 {1*C^+(1), 1*C(2)} = 0 {1*C^+(1), 1*C(3)} = 0 {1*C^+(2), 1*C(1)} = 0 {1*C^+(2), 1*C(2)} = 1 {1*C^+(2), 1*C(3)} = 0 {1*C^+(3), 1*C(1)} = 0 {1*C^+(3), 1*C(2)} = 0 {1*C^+(3), 1*C(3)} = 1 Commutators: [1*C^+(1), 1*C(1)] = -1 + 2*C^+(1)C(1) [1*C^+(1), 1*C(2)] = 2*C^+(1)C(2) [1*C^+(1), 1*C(3)] = 2*C^+(1)C(3) [1*C^+(2), 1*C(1)] = 2*C^+(2)C(1) [1*C^+(2), 1*C(2)] = -1 + 2*C^+(2)C(2) [1*C^+(2), 1*C(3)] = 2*C^+(2)C(3) [1*C^+(3), 1*C(1)] = 2*C^+(3)C(1) [1*C^+(3), 1*C(2)] = 2*C^+(3)C(2) [1*C^+(3), 1*C(3)] = -1 + 2*C^+(3)C(3) Algebra: x = 1*C(0) y = 1*C^+(1) -x = -1*C(0) x + 2.0 = 2 + 1*C(0) 2.0 + x = 2 + 1*C(0) x - 2.0 = -2 + 1*C(0) 2.0 - x = 2 + -1*C(0) 3.0*y = 3*C^+(1) y*3.0 = 3*C^+(1) x + y = 1*C^+(1) + 1*C(0) x - y = -1*C^+(1) + 1*C(0) (x + y)*(x - y) = 2*C^+(1)C(0) N^3: N = 1*C^+(dn)C(dn) + 1*C^+(up)C(up) N^3 = 1*C^+(dn)C(dn) + 1*C^+(up)C(up) + 6*C^+(dn)C^+(up)C(up)C(dn) New N^3 = 1*C^+(dn)C(dn) + 1*C^+(up)C(up) + 6*C^+(dn)C^+(up)C(up)C(dn) X = -1*C^+(1)C^+(2)C(4)C(3) dagger(X) = -1*C^+(3)C^+(4)C(2)C(1)