.. _hilbert_transform: .. module:: pytriqs.dos.hilbert_transform Hilbert Transform ======================================= TRIQS comes with a Hilbert transform. Let us look at an example: .. runblock:: python from pytriqs.lattice.tight_binding import * from pytriqs.dos import HilbertTransform from pytriqs.gf.local import GfImFreq # Define a DOS (here on a square lattice) BL = BravaisLattice(units = [(1,0,0) , (0,1,0) ], orbital_positions= [(0,0,0)] ) t = -1.00 # First neighbour Hopping tp = 0.0*t # Second neighbour Hopping hop= { (1,0) : [[ t]], (-1,0): [[ t]], (0,1) : [[ t]], (0,-1): [[ t]], (1,1) : [[ tp]], (-1,-1): [[ tp]], (1,-1): [[ tp]], (-1,1): [[ tp]]} TB = TightBinding (BL, hop) d = dos(TB, n_kpts= 500, n_eps = 101, name = 'dos')[0] #define a Hilbert transform H = HilbertTransform(d) #fill a Green function G = GfImFreq(indices = ['up','down'], beta = 20) Sigma0 = GfImFreq(indices = ['up','down'], beta = 20); Sigma0.zero() G <<= H(Sigma = Sigma0,mu=0.) Given a density of states `d` (here for a tight-binding model), the Hilbert transform `H` is defined is defined in the following way:: H = HilbertTransform(d) To construct a Green's function:: G = GfImFreq(indices = ['up','down'], beta = 20) Sigma0 = GfImFreq(indices = ['up','down'], beta = 20); Sigma0.zero() G <<= H(Sigma = Sigma0, mu=0.) .. autoclass:: pytriqs.dos.HilbertTransform :members: __call__ :undoc-members: