/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012 by M. Ferrero, O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_GF_RE_IM_TIMES_H #define TRIQS_GF_RE_IM_TIMES_H #include "./tools.hpp" #include "./gf.hpp" #include "./retime.hpp" #include "./imtime.hpp" #include "./meshes/product.hpp" namespace triqs { namespace gfs { struct re_im_time {}; // the gf_mesh template struct gf_mesh : mesh_product,gf_mesh> { typedef gf_mesh m1_t; typedef gf_mesh m2_t; typedef mesh_product B; gf_mesh () = default; gf_mesh (double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) : B {gf_mesh(tmin,tmax,nt), gf_mesh(beta,S, ntau, mk)} {} }; namespace gfs_implementation { // singularity //template struct singularity { typedef gf type;}; // h5 name template struct h5_name { static std::string invoke(){ return "GfReImTime";}}; /// --------------------------- data access --------------------------------- template struct data_proxy : data_proxy_array,1> {}; /// --------------------------- evaluator --------------------------------- template struct evaluator { static constexpr int arity = 2; template std::complex operator() (G const * g, double t, double tau) const { double beta = std::get<1>(g->mesh().components()).domain().beta; int p = std::floor(tau/beta); tau -= p*beta; size_t nr,ni; double wr,wi; bool in; std::tie(in, nr, wr) = windowing( std::get<0>(g->mesh().components()),t); if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds, tmax=" << std::get<0>(g->mesh().components()).x_max() << ", tmin=" << std::get<0>(g->mesh().components()).x_min() << "here, t=" <(g->mesh().components()),tau); if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds, taumax=" << std::get<1>(g->mesh().components()).x_max()<< ", taumin=" << std::get<1>(g->mesh().components()).x_min() << "here, tau=" <on_mesh(nr,ni);}; //data( g->mesh().index_to_linear(nr,ni)); auto res = (1-wr) * ( (1-wi) * gg(nr,ni) + wi * gg(nr,ni+1)) + wr * ( (1-wi) * gg(nr+1,ni) + wi * gg(nr+1,ni+1)); return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res); } }; // ------------------------------- Factories -------------------------------------------------- template struct factories { typedef gf gf_t; template static gf_t make_gf(MeshType && m) { typename gf_t::data_regular_t A(m.size()); A() =0; return gf_t (m, std::move(A), nothing(), nothing() ) ; } static gf_t make_gf(double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) { auto m = gf_mesh(tmin,tmax, nt, beta, S, ntau, mk); typename gf_t::data_regular_t A(m.size()); A() =0; return gf_t (m, std::move(A), nothing(), nothing()); //return gf_t (m, std::move(A), make_gf(tmin, tmax, nt), nothing()); } }; } // gfs_implementation // CHANGE THIS NAME !!! template void assign_from_expression (gf_impl const &, RHS) {} //slices inline gf_view slice_mesh_imtime (gf_view g, size_t index) { auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array return { std::get<0>(g.mesh().components()), arr(arrays::range(), index), local::tail(1,1), nothing() }; } /* gf_view slice_mesh_retime ( gf_view g, size_t index) { auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array return { std::get<1>(g.mesh().components()), arr(index, arrays::range()), g.singularity().singularity(), nothing() }; } */ // // gf_view slice_meshes ( gf_view g, size_t index) { // return { std::get<0>(g.mesh().components()), g.data()(arrays::range(), index), tail ( g.singularity(.......) ), g.symmetry()} // } }} #endif