/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2014 by O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #pragma once #include //#include #include namespace triqs { namespace mpi { /// Environment struct environment { environment(int argc, char *argv[]) { MPI_Init(&argc, &argv); } ~environment() { MPI_Finalize(); } }; /// The communicator. Todo : add more constructors. class communicator { MPI_Comm _com = MPI_COMM_WORLD; public: communicator() = default; MPI_Comm get() const { return _com; } int rank() const { int num; MPI_Comm_rank(_com, &num); return num; } int size() const { int num; MPI_Comm_size(_com, &num); return num; } void barrier() const { MPI_Barrier(_com); } }; /// a tag for each operation namespace tag { struct reduce {}; struct allreduce {}; struct scatter {}; struct gather {}; struct allgather {}; } /// The implementation of mpi ops for each type template struct mpi_impl; // ---------------------------------------- // ------- top level functions ------- // ---------------------------------------- // ----- functions that can be lazy ------- template AUTO_DECL reduce(T const &x, communicator c = {}, int root = 0) RETURN(mpi_impl::invoke(tag::reduce(), c, x, root)); template AUTO_DECL scatter(T const &x, communicator c = {}, int root = 0) RETURN(mpi_impl::invoke(tag::scatter(), c, x, root)); template AUTO_DECL gather(T const &x, communicator c = {}, int root = 0) RETURN(mpi_impl::invoke(tag::gather(), c, x, root)); template AUTO_DECL allreduce(T const &x, communicator c = {}, int root = 0) RETURN(mpi_impl::invoke(tag::allreduce(), c, x, root)); template AUTO_DECL allgather(T const &x, communicator c = {}, int root = 0) RETURN(mpi_impl::invoke(tag::allgather(), c, x, root)); // ----- functions that cannot be lazy ------- template void reduce_in_place(T &x, communicator c = {}, int root = 0) { mpi_impl::reduce_in_place(c, x, root); } template void broadcast(T &x, communicator c = {}, int root = 0) { mpi_impl::broadcast(c, x, root); } // transformation type -> mpi types template struct mpi_datatype; #define D(T, MPI_TY) \ template <> struct mpi_datatype { \ static MPI_Datatype invoke() { return MPI_TY; } \ }; D(int, MPI_INT) D(long, MPI_LONG) D(double, MPI_DOUBLE) D(float, MPI_FLOAT) D(std::complex, MPI_DOUBLE_COMPLEX); D(unsigned long, MPI_UNSIGNED_LONG); #undef D /** ------------------------------------------------------------ * basic types * ---------------------------------------------------------- **/ template struct mpi_impl_basic { static MPI_Datatype D() { return mpi_datatype::invoke(); } static T invoke(tag::reduce, communicator c, T a, int root) { T b; MPI_Reduce(&a, &b, 1, D(), MPI_SUM, root, c.get()); return b; } static T invoke(tag::allreduce, communicator c, T a, int root) { T b; MPI_Allreduce(&a, &b, 1, D(), MPI_SUM, root, c.get()); return b; } static void reduce_in_place(communicator c, T &a, int root) { MPI_Reduce((c.rank() == root ? MPI_IN_PLACE : &a), &a, 1, D(), MPI_SUM, root, c.get()); } static void allreduce_in_place(communicator c, T &a, int root) { MPI_Allreduce(MPI_IN_PLACE, &a, 1, D(), MPI_SUM, root, c.get()); } static void broadcast(communicator c, T &a, int root) { MPI_Bcast(&a, 1, D(), root, c.get()); } }; // mpl_impl_basic is the mpi_impl is T is a number (including complex) template struct mpi_impl::value || triqs::is_complex::value>> : mpi_impl_basic {}; //------------ Some helper function inline long slice_length(size_t imax, communicator c, int r) { auto imin = 0; long j = (imax - imin + 1) / c.size(); long i = imax - imin + 1 - c.size() * j; auto r_min = (r <= i - 1 ? imin + r * (j + 1) : imin + r * j + i); auto r_max = (r <= i - 1 ? imin + (r + 1) * (j + 1) - 1 : imin + (r + 1) * j + i - 1); return r_max - r_min + 1; }; } }