/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2012-2013 by O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #pragma once #include "./tools.hpp" #include "./gf.hpp" #include "./local/tail.hpp" #include "./local/no_tail.hpp" #include "./domains/matsubara.hpp" #include "./meshes/matsubara_time.hpp" #include "./evaluators.hpp" namespace triqs { namespace gfs { struct imtime {}; template struct gf_mesh : matsubara_time_mesh { template gf_mesh(T &&... x) : matsubara_time_mesh(std::forward(x)...) {} // using matsubara_time_mesh::matsubara_time_mesh; }; namespace gfs_implementation { // singularity. If no_tail is given, then it is the default (nothing) template <> struct singularity { using type = local::tail; }; template <> struct singularity { using type = local::tail; }; // h5 name template struct h5_name { static std::string invoke() { return "ImTime"; } }; /// --------------------------- data access --------------------------------- template struct data_proxy : data_proxy_array {}; template struct data_proxy : data_proxy_array {}; /// --------------------------- closest mesh point on the grid --------------------------------- template struct get_closest_point { // index_t is int template static int invoke(G const *g, closest_pt_wrap const &p) { double x = (g->mesh().kind() == half_bins ? double(p.value) : double(p.value) + 0.5 * g->mesh().delta()); int n = std::floor(x / g->mesh().delta()); return n; } }; /// --------------------------- evaluator --------------------------------- // this one is specific because of the beta-antiperiodicity for fermions template <> struct evaluator_fnt_on_mesh { double w1, w2; long n; evaluator_fnt_on_mesh() = default; evaluator_fnt_on_mesh(gf_mesh const &m, double tau) { double beta = m.domain().beta; int p = std::floor(tau / beta); tau -= p * beta; double w; bool in; std::tie(in, n, w) = windowing(m, tau); if ((m.domain().statistic == Fermion) && (p % 2 != 0)) { w2 = -w; w1 = w - 1; } else { w2 = w; w1 = 1 - w; } } template auto operator()(F const &f) const DECL_AND_RETURN(w1 *f(n) + w2 *f(n + 1)); }; // now evaluator template struct evaluator : evaluator_one_var {}; } // gfs_implementation. } }