/******************************************************************************* * * TRIQS: a Toolbox for Research in Interacting Quantum Systems * * Copyright (C) 2011 by O. Parcollet * * TRIQS is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * TRIQS. If not, see . * ******************************************************************************/ #ifndef TRIQS_ARRAYS_NUMPY_EXTRACTOR_H #define TRIQS_ARRAYS_NUMPY_EXTRACTOR_H #ifdef TRIQS_WITH_PYTHON_SUPPORT #include "../storages/shared_block.hpp" #include "triqs/utility/exceptions.hpp" #include "numpy/arrayobject.h" namespace triqs { namespace arrays { namespace numpy_interface { inline std::string object_to_string (PyObject * p) { if (!PyString_Check(p)) TRIQS_RUNTIME_ERROR<<" Internal error, expected a python string ....."; return PyString_AsString(p); } template struct numpy_to_C_type; #define CONVERT(C,P) template <> struct numpy_to_C_type { enum {arraytype = P}; } CONVERT(bool, NPY_BOOL); CONVERT(char, NPY_CHAR); CONVERT(signed char, NPY_BYTE); CONVERT(unsigned char, NPY_UBYTE); CONVERT(short, NPY_SHORT); CONVERT(unsigned short, NPY_USHORT); CONVERT(int, NPY_INT); CONVERT(unsigned int, NPY_UINT); CONVERT(long, NPY_LONG); CONVERT(unsigned long, NPY_ULONG); CONVERT(long long, NPY_LONGLONG); CONVERT(unsigned long long, NPY_ULONGLONG); CONVERT(float, NPY_FLOAT); CONVERT(double, NPY_DOUBLE); CONVERT(long double, NPY_LONGDOUBLE); CONVERT(std::complex, NPY_CFLOAT); CONVERT(std::complex, NPY_CDOUBLE); CONVERT(std::complex, NPY_CLONGDOUBLE); #undef CONVERT struct copy_exception : public triqs::runtime_error {}; // return a NEW (owned) reference // inline PyObject * numpy_extractor_impl ( PyObject * X, bool allow_copy, std::string type_name, int elementsType, int rank, size_t * lengths, std::ptrdiff_t * strides, size_t size_of_ValueType) { PyObject * numpy_obj; if (X==NULL) TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is NULL !"; if (_import_array()!=0) TRIQS_RUNTIME_ERROR <<"Internal Error in importing numpy"; static const char * error_msg = " A deep copy of the object would be necessary while views are supposed to guarantee to present a *view* of the python data.\n"; if (!allow_copy) { if (!PyArray_Check(X)) throw copy_exception () << error_msg<<" Indeed the object was not even an array !\n"; if ( elementsType != PyArray_TYPE((PyArrayObject*)X)) throw copy_exception () << error_msg<<" The deep copy is caused by a type mismatch of the elements. Expected "<< type_name<< " and found XXX \n"; PyArrayObject *arr = (PyArrayObject *)X; #ifdef TRIQS_NUMPY_VERSION_LT_17 if ( arr->nd != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< arr->nd << "while you ask for rank "<< rank<<". \n"; #else if ( PyArray_NDIM(arr) != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< PyArray_NDIM(arr) << "while you ask for rank "<< rank<<". \n"; #endif numpy_obj = X; Py_INCREF(X); } else { // From X, we ask the numpy library to make a numpy, and of the correct type. // This handles automatically the cases where : // - we have list, or list of list/tuple // - the numpy type is not the one we want. // - adjust the dimension if needed // If X is an array : // - if Order is same, don't change it // - else impose it (may provoque a copy). // if X is not array : // - Order = FortranOrder or SameOrder - > Fortran order otherwise C //bool ForceCast = false;// Unless FORCECAST is present in flags, this call will generate an error if the data type cannot be safely obtained from the object. int flags = 0; //(ForceCast ? NPY_FORCECAST : 0) ;// do NOT force a copy | (make_copy ? NPY_ENSURECOPY : 0); if (!(PyArray_Check(X) )) //flags |= ( IndexMapType::traversal_order == indexmaps::mem_layout::c_order(rank) ? NPY_C_CONTIGUOUS : NPY_F_CONTIGUOUS); //impose mem order #ifdef TRIQS_NUMPY_VERSION_LT_17 flags |= (NPY_C_CONTIGUOUS); //impose mem order #else flags |= (NPY_ARRAY_C_CONTIGUOUS); //impose mem order #endif numpy_obj= PyArray_FromAny(X,PyArray_DescrFromType(elementsType), rank,rank, flags , NULL ); // do several checks if (!numpy_obj) {// The convertion of X to a numpy has failed ! if (PyErr_Occurred()) {PyErr_Print();PyErr_Clear();} TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is not convertible to a numpy. "; } assert (PyArray_Check(numpy_obj)); assert((numpy_obj->ob_refcnt==1) || ((numpy_obj ==X))); PyArrayObject *arr_obj; arr_obj = (PyArrayObject *)numpy_obj; try { #ifdef TRIQS_NUMPY_VERSION_LT_17 if (arr_obj->nd!=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match"; if (arr_obj->descr->type_num != elementsType) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <descr->type_num <<" vs "<type_num != elementsType) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <type_num <<" vs "<nd; // we know that dim == rank for (size_t i=0; i< dim ; ++i) { lengths[i] = size_t(arr_obj-> dimensions[i]); strides[i] = std::ptrdiff_t(arr_obj-> strides[i])/ size_of_ValueType; } #else const size_t dim = PyArray_NDIM(arr_obj); // we know that dim == rank for (size_t i=0; i< dim ; ++i) { lengths[i] = size_t( PyArray_DIMS(arr_obj)[i]); strides[i] = std::ptrdiff_t( PyArray_STRIDES(arr_obj)[i])/ size_of_ValueType; } #endif return numpy_obj; } // a little template class template struct numpy_extractor { numpy_extractor (PyObject * X, bool allow_copy) { numpy_obj = numpy_extractor_impl (X, allow_copy, typeid(ValueType).name(), numpy_to_C_type::type>::arraytype, IndexMapType::rank, &lengths[0], &strides[0],sizeof(ValueType)); } ~numpy_extractor(){ Py_DECREF(numpy_obj);} IndexMapType indexmap() const { return IndexMapType (lengths,strides,0); } storages::shared_block storage() const { return storages::shared_block (numpy_obj,true); } // true means borrowed : object is owned by this class, which will decref it in case of exception ... private: PyObject * numpy_obj; mini_vector lengths; mini_vector strides; }; }}} #endif #endif