.. highlight:: c .. _gf_tail: High frequency tail =========================== Definition ---------------------- The tail of a Green's function is defined as the behavior of the Green's function :math:`G` at large Matsubara frequencies, namely .. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots Generically, the tail is parametrized by matrix-valued coefficients :math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ ) .. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i} Implementation -------------- In TRIQS, the tail is implemented as an object ``tail``. Here is a simple example of use: .. compileblock:: #include #include #include int main(){ int N1=1, N2=1; triqs::gfs::local::tail t(N1,N2); t.mask_view() = 5;//only coeffs from -1 to 5 are meaningful std::cout << t(0) << std::endl; t(2) = .5; std::cout << t << std::endl; } Fitting the tail of a Green's function --------------------------------------- Given an imaginary-frequency Green's function, one can compute the moments of its high-frequency tail with the function ``set_tail_from_fit``: .. compileblock:: #include #include using namespace triqs::gfs; int main(){ triqs::clef::placeholder<0> iom_; double beta =10; int N=100; auto gw = gf{{beta, Fermion, N}, {1, 1}}; gw(iom_) << 1/(iom_-1); size_t n_min=50; //linear index on mesh to start the fit size_t n_max=90; //final linear index for fit (included) int n_moments=4; //number of moments in the final tail (including known ones) int size=1; //means that we know one moment int order_min=1; //means that the first moment in the final tail will be the first moment auto known_moments = local::tail(make_shape(1,1), size, order_min); //length is 0, first moment to fit is order_min known_moments(1)=1.;//set the first moment set_tail_from_fit(gw, known_moments, n_moments, n_min, n_max, true);//true replace the gf data in the fitting range by the tail values std::cout << gw.singularity() << std::endl; } The full documentation of ``set_tail_from_fit`` is :doc:`here`. API **** Here are the main methods of the ``tail`` class: +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | Member | Description | Type | +=================================+=========================================================================================+==========================+ | data() | 3-dim array of the coefficients: ``data(i,n,m)`` :math:`=(\mathbf{a}_{i+o_{min}})_{nm}` | data_view_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | mask_view() | 2-dim (:math:`N_1 \times N_2`) array of the maximum non-zero indices | mask_view_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | order_min() | minimum order | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | order_max() | maximum order | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | size() | first dim of data() | size_t | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | shape() | shape of data() | shape_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | smallest_nonzeros() | order of the smallest_nonzero coefficient | long | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | is_decreasing_at_infinity() | true if the tail is decreasing at infinity | bool | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | operator() (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | mv_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | get_or_zero (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | const_mv_type | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ | evaluate(dcomplex const &omega) | value of the tail at frequency omega | arrays::matrix | +---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+ The tail is DefaultConstructible, H5Serializable and BoostSerializable.