################################################################################ # # TRIQS: a Toolbox for Research in Interacting Quantum Systems # # Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola # # TRIQS is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # TRIQS. If not, see . # ################################################################################ from types import * import numpy import pytriqs.utility.dichotomy as dichotomy from pytriqs.gf.local import * import pytriqs.utility.mpi as mpi from pytriqs.archive import * from symmetry import * class SumkLDA: """This class provides a general SumK method for combining ab-initio code and pytriqs.""" def __init__(self, hdf_file, mu = 0.0, h_field = 0.0, use_lda_blocks = False, lda_data = 'lda_input', symmcorr_data = 'lda_symmcorr_input', parproj_data = 'lda_parproj_input', symmpar_data = 'lda_symmpar_input', bands_data = 'lda_bands_input', lda_output = 'lda_output'): """ Initialises the class from data previously stored into an HDF5 """ if not (type(hdf_file)==StringType): mpi.report("Give a string for the HDF5 filename to read the input!") else: self.hdf_file = hdf_file self.lda_data = lda_data self.symmcorr_data = symmcorr_data self.parproj_data = parproj_data self.symmpar_data = symmpar_data self.bands_data = bands_data self.lda_output = lda_output self.G_upfold = None self.h_field = h_field # read input from HDF: things_to_read = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required', 'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat', 'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping'] self.subgroup_present, self.value_read = self.read_input_from_hdf(subgrp = self.lda_data, things_to_read = things_to_read) if (self.SO) and (abs(self.h_field)>0.000001): self.h_field=0.0 mpi.report("For SO, the external magnetic field is not implemented, setting it to 0!") # FIXME -- REMOVE THIS, WRITE DATA IN CONVERTER # determine the number of inequivalent correlated shells (self.n_inequiv_corr_shells) # and related maps (self.shellmap, self.invshellmap) self.inequiv_shells(self.corr_shells) self.spin_block_names = [ ['up','down'], ['ud'] ] self.n_spin_blocks = [2,1] # convert spin_block_names to indices -- if spin polarized, differentiate up and down blocks self.spin_names_to_ind = [{}, {}] for iso in range(2): # SO = 0 or 1 for ibl in range(self.n_spin_blocks[iso]): self.spin_names_to_ind[iso][self.spin_block_names[iso][ibl]] = ibl * self.SP # GF structure used for the local things in the k sums # Most general form allowing for all hybridisation, i.e. largest blocks possible self.gf_struct_sumk = [ [ (b, range( self.corr_shells[i][3])) for b in self.spin_block_names[self.corr_shells[i][4]] ] for i in xrange(self.n_corr_shells) ] #----- # If these quantities are not in HDF, set them up # FIXME READ AND WRITE sumk_to_solver AND solver_to_sumk optional_things = ['gf_struct_solver','map_inv','map','chemical_potential','dc_imp','dc_energ','deg_shells'] self.subgroup_present, self.value_read = self.read_input_from_hdf(subgrp = self.lda_output, things_to_read = [], optional_things = optional_things) if (not self.subgroup_present) or (not self.value_read['gf_struct_solver']): # No gf_struct was stored in HDF, so first set a standard one: self.gf_struct_solver = [ dict([ (b, range(self.corr_shells[self.invshellmap[i]][3]) ) for b in self.spin_block_names[self.corr_shells[self.invshellmap[i]][4]] ]) for i in range(self.n_inequiv_corr_shells) ] self.map = [ {} for i in xrange(self.n_inequiv_corr_shells) ] self.map_inv = [ {} for i in xrange(self.n_inequiv_corr_shells) ] for i in xrange(self.n_inequiv_corr_shells): for b in self.spin_block_names[self.corr_shells[self.invshellmap[i]][4]]: self.map[i][b] = [b for j in range( self.corr_shells[self.invshellmap[i]][3] ) ] self.map_inv[i][b] = b # Set standard (identity) maps from gf_struct_sumk <-> gf_struct_solver self.sumk_to_solver = [ {} for ish in range(self.n_inequiv_corr_shells) ] self.solver_to_sumk = [ {} for ish in range(self.n_inequiv_corr_shells) ] self.solver_to_sumk_block = [ {} for ish in range(self.n_inequiv_corr_shells) ] for ish in range(self.n_inequiv_corr_shells): for block,inner_list in self.gf_struct_sumk[self.invshellmap[ish]]: self.solver_to_sumk_block[ish][block] = block for inner in inner_list: self.sumk_to_solver[ish][(block,inner)] = (block,inner) self.solver_to_sumk[ish][(block,inner)] = (block,inner) if (not self.subgroup_present) or (not self.value_read['dc_imp']): self.__init_dc() # initialise the double counting if (not self.subgroup_present) or (not self.value_read['chemical_potential']): self.chemical_potential = mu if (not self.subgroup_present) or (not self.value_read['deg_shells']): self.deg_shells = [ [] for i in range(self.n_inequiv_corr_shells)] #----- if self.symm_op: self.symmcorr = Symmetry(hdf_file,subgroup=self.symmcorr_data) # Analyse the block structure and determine the smallest blocks, if desired if (use_lda_blocks): dm=self.analyse_block_structure() # Now save new things to HDF5: # FIXME WHAT HAPPENS TO h_field? INPUT TO __INIT__? ADD TO OPTIONAL_THINGS? things_to_save=['chemical_potential','dc_imp','dc_energ','h_field'] self.save(things_to_save) ################ # HDF5 FUNCTIONS ################ def read_input_from_hdf(self, subgrp, things_to_read=[], optional_things=[]): """ Reads data from the HDF file """ value_read = True # initialise variables on all nodes to ensure mpi broadcast works at the end for it in things_to_read: setattr(self,it,0) for it in optional_things: setattr(self,it,0) if mpi.is_master_node(): ar=HDFArchive(self.hdf_file,'a') if subgrp in ar: subgroup_present = True # first read the necessary things: for it in things_to_read: if it in ar[subgrp]: setattr(self,it,ar[subgrp][it]) else: mpi.report("Loading %s failed!"%it) value_read = False if (value_read and (len(optional_things)>0)): # if successfully read necessary items, read optional things: value_read = {} for it in optional_things: if it in ar[subgrp]: setattr(self,it,ar[subgrp][it]) value_read['%s'%it] = True else: value_read['%s'%it] = False else: if (len(things_to_read) != 0): mpi.report("Loading failed: No %s subgroup in HDF5!"%subgrp) subgroup_present = False value_read = False del ar # now do the broadcasting: for it in things_to_read: setattr(self,it,mpi.bcast(getattr(self,it))) for it in optional_things: setattr(self,it,mpi.bcast(getattr(self,it))) subgroup_present = mpi.bcast(subgroup_present) value_read = mpi.bcast(value_read) return subgroup_present, value_read def save(self,things_to_save): """Saves some quantities into an HDF5 archive""" if not (mpi.is_master_node()): return # do nothing on nodes ar = HDFArchive(self.hdf_file,'a') if not (self.lda_output in ar): ar.create_group(self.lda_output) for it in things_to_save: try: ar[self.lda_output][it] = getattr(self,it) except: mpi.report("%s not found, and so not stored."%it) del ar ################ # CORE FUNCTIONS ################ def downfold(self,ik,icrsh,bname,gf_to_downfold,gf_inp): """Downfolding a block of the Greens function""" gf_downfolded = gf_inp.copy() isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices dim = self.corr_shells[icrsh][3] n_orb = self.n_orbitals[ik,isp] projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb] gf_downfolded.from_L_G_R(projmat,gf_to_downfold,projmat.conjugate().transpose()) return gf_downfolded def upfold(self,ik,icrsh,bname,gf_to_upfold,gf_inp): """Upfolding a block of the Greens function""" gf_upfolded = gf_inp.copy() isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices dim = self.corr_shells[icrsh][3] n_orb = self.n_orbitals[ik,isp] projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb] gf_upfolded.from_L_G_R(projmat.conjugate().transpose(),gf_to_upfold,projmat) return gf_upfolded def rotloc(self,icrsh,gf_to_rotate,direction): """Local <-> Global rotation of a GF block. direction: 'toLocal' / 'toGlobal' """ assert ((direction=='toLocal')or(direction=='toGlobal')),"Give direction 'toLocal' or 'toGlobal' in rotloc!" gf_rotated = gf_to_rotate.copy() if (direction=='toGlobal'): if ((self.rot_mat_time_inv[icrsh]==1) and (self.SO)): gf_rotated << gf_rotated.transpose() gf_rotated.from_L_G_R(self.rot_mat[icrsh].conjugate(),gf_rotated,self.rot_mat[icrsh].transpose()) else: gf_rotated.from_L_G_R(self.rot_mat[icrsh],gf_rotated,self.rot_mat[icrsh].conjugate().transpose()) elif (direction=='toLocal'): if ((self.rot_mat_time_inv[icrsh]==1) and (self.SO)): gf_rotated << gf_rotated.transpose() gf_rotated.from_L_G_R(self.rot_mat[icrsh].transpose(),gf_rotated,self.rot_mat[icrsh].conjugate()) else: gf_rotated.from_L_G_R(self.rot_mat[icrsh].conjugate().transpose(),gf_rotated,self.rot_mat[icrsh]) return gf_rotated def lattice_gf_matsubara(self,ik,mu,beta=40,with_Sigma=True): """Calculates the lattice Green function from the LDA hopping and the self energy at k-point number ik and chemical potential mu.""" ntoi = self.spin_names_to_ind[self.SO] bln = self.spin_block_names[self.SO] if (not hasattr(self,"Sigma_imp")): with_Sigma=False if (with_Sigma): stmp = self.add_dc() beta = self.Sigma_imp[0].mesh.beta # override beta if Sigma is present # Do we need to set up G_upfold? set_up_G_upfold = False # assume not if self.G_upfold is None: # yes if not G_upfold provided set_up_G_upfold = True else: # yes if inconsistencies present in existing G_upfold GFsize = [ gf.N1 for bname,gf in self.G_upfold] unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==GFsize[ibl] for ibl in range(self.n_spin_blocks[self.SO]) ] ) if ( (not unchangedsize) or (self.G_upfold.mesh.beta != beta) ): set_up_G_upfold = True # Set up G_upfold if set_up_G_upfold: block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ] gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ] block_ind_list = [block for block,inner in gf_struct] if (with_Sigma): glist = lambda : [ GfImFreq(indices = inner, mesh = self.Sigma_imp[0].mesh) for block,inner in gf_struct] else: glist = lambda : [ GfImFreq(indices = inner, beta = beta) for block,inner in gf_struct] self.G_upfold = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False) self.G_upfold.zero() self.G_upfold << iOmega_n idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln] M = copy.deepcopy(idmat) for ibl in range(self.n_spin_blocks[self.SO]): ind = ntoi[bln[ibl]] n_orb = self.n_orbitals[ik,ind] M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl)) self.G_upfold -= M if (with_Sigma): for icrsh in xrange(self.n_corr_shells): for bname,gf in self.G_upfold: gf -= self.upfold(ik,icrsh,bname,stmp[icrsh][bname],gf) self.G_upfold.invert() return self.G_upfold def simple_point_dens_mat(self): ntoi = self.spin_names_to_ind[self.SO] bln = self.spin_block_names[self.SO] MMat = [numpy.zeros( [self.n_orbitals[0,ntoi[bl]],self.n_orbitals[0,ntoi[bl]]], numpy.complex_) for bl in bln] dens_mat = [ {} for icrsh in xrange(self.n_corr_shells)] for icrsh in xrange(self.n_corr_shells): for bl in self.spin_block_names[self.corr_shells[icrsh][4]]: dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_) ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==len(MMat[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ] ) if (not unchangedsize): MMat = [numpy.zeros( [self.n_orbitals[ik,ntoi[bl]],self.n_orbitals[ik,ntoi[bl]]], numpy.complex_) for bl in bln] for ibl, bl in enumerate(bln): ind = ntoi[bl] for inu in range(self.n_orbitals[ik,ind]): if ( (self.hopping[ik,ind,inu,inu]-self.h_field*(1-2*ibl)) < 0.0): # ONLY WORKS FOR DIAGONAL HOPPING MATRIX (TRUE IN WIEN2K) MMat[ibl][inu,inu] = 1.0 else: MMat[ibl][inu,inu] = 0.0 for icrsh in range(self.n_corr_shells): for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]): isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn] dim = self.corr_shells[icrsh][3] n_orb = self.n_orbitals[ik,isp] projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb] dens_mat[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(projmat,MMat[ibl]) , projmat.transpose().conjugate() ) # get data from nodes: for icrsh in range(self.n_corr_shells): for bname in dens_mat[icrsh]: dens_mat[icrsh][bname] = mpi.all_reduce(mpi.world,dens_mat[icrsh][bname],lambda x,y : x+y) mpi.barrier() if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat) # Rotate to local coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): for bn in dens_mat[icrsh]: if (self.rot_mat_time_inv[icrsh]==1): dens_mat[icrsh][bn] = dens_mat[icrsh][bn].conjugate() dens_mat[icrsh][bn] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh][bn]) , self.rot_mat[icrsh]) return dens_mat # calculate upfolded gf, then density matrix -- no assumptions on structure (ie diagonal or not) def density_gf(self,beta): """Calculates the density without setting up Gloc. It is useful for Hubbard I, and very fast.""" dens_mat = [ {} for icrsh in xrange(self.n_corr_shells)] for icrsh in xrange(self.n_corr_shells): for bl in self.spin_block_names[self.corr_shells[icrsh][4]]: dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_) ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): G_upfold = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential) G_upfold *= self.bz_weights[ik] dm = G_upfold.density() MMat = [dm[bl] for bl in self.spin_block_names[self.SO]] for icrsh in range(self.n_corr_shells): for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]): isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn] dim = self.corr_shells[icrsh][3] n_orb = self.n_orbitals[ik,isp] projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb] dens_mat[icrsh][bn] += numpy.dot( numpy.dot(projmat,MMat[ibl]), projmat.transpose().conjugate() ) # get data from nodes: for icrsh in range(self.n_corr_shells): for bname in dens_mat[icrsh]: dens_mat[icrsh][bname] = mpi.all_reduce(mpi.world,dens_mat[icrsh][bname],lambda x,y : x+y) mpi.barrier() if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat) # Rotate to local coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): for bn in dens_mat[icrsh]: if (self.rot_mat_time_inv[icrsh]==1): dens_mat[icrsh][bn] = dens_mat[icrsh][bn].conjugate() dens_mat[icrsh][bn] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh][bn]) , self.rot_mat[icrsh] ) return dens_mat def analyse_block_structure(self, threshold = 0.00001, include_shells = None, dm = None): """ Determines the Green function block structure from simple point integration.""" if dm is None: dm = self.simple_point_dens_mat() dens_mat = [dm[self.invshellmap[ish]] for ish in xrange(self.n_inequiv_corr_shells) ] self.sumk_to_solver = [ {} for ish in range(self.n_inequiv_corr_shells) ] self.solver_to_sumk = [ {} for ish in range(self.n_inequiv_corr_shells) ] self.solver_to_sumk_block = [ {} for ish in range(self.n_inequiv_corr_shells) ] if include_shells is None: include_shells=range(self.n_inequiv_corr_shells) for ish in include_shells: self.gf_struct_solver[ish] = {} gf_struct_temp = [] block_ind_list = [block for block,inner in self.gf_struct_sumk[self.invshellmap[ish]] ] for block in block_ind_list: dm = dens_mat[ish][block] dmbool = (abs(dm) > threshold) # gives an index list of entries larger that threshold offdiag = [] for i in xrange(len(dmbool)): for j in xrange(i,len(dmbool)): if ((dmbool[i,j])&(i!=j)): offdiag.append([i,j]) NBlocs = len(dmbool) blocs = [ [i] for i in range(NBlocs) ] for i in range(len(offdiag)): if (offdiag[i][0]!=offdiag[i][1]): for j in range(len(blocs[offdiag[i][1]])): blocs[offdiag[i][0]].append(blocs[offdiag[i][1]][j]) del blocs[offdiag[i][1]] for j in range(i+1,len(offdiag)): if (offdiag[j][0]==offdiag[i][1]): offdiag[j][0]=offdiag[i][0] if (offdiag[j][1]==offdiag[i][1]): offdiag[j][1]=offdiag[i][0] if (offdiag[j][0]>offdiag[i][1]): offdiag[j][0] -= 1 if (offdiag[j][1]>offdiag[i][1]): offdiag[j][1] -= 1 offdiag[j].sort() NBlocs-=1 for i in range(NBlocs): blocs[i].sort() self.gf_struct_solver[ish].update( [('%s_%s'%(block,i),range(len(blocs[i])))] ) gf_struct_temp.append( ('%s_%s'%(block,i),blocs[i]) ) # Construct sumk_to_solver taking (sumk_block, sumk_index) --> (solver_block, solver_inner) # and solver_to_sumk taking (solver_block, solver_inner) --> (sumk_block, sumk_index) for i in range(NBlocs): for j in range(len(blocs[i])): block_sumk = block inner_sumk = blocs[i][j] block_solv = '%s_%s'%(block,i) inner_solv = j self.sumk_to_solver[ish][(block_sumk,inner_sumk)] = (block_solv,inner_solv) self.solver_to_sumk[ish][(block_solv,inner_solv)] = (block_sumk,inner_sumk) self.solver_to_sumk_block[ish][block_solv] = block_sumk # map is the mapping of the blocs from the SK blocs to the CTQMC blocs: self.map[ish][block] = range(len(dmbool)) for ibl in range(NBlocs): for j in range(len(blocs[ibl])): self.map[ish][block][blocs[ibl][j]] = '%s_%s'%(block,ibl) self.map_inv[ish]['%s_%s'%(block,ibl)] = block # now calculate degeneracies of orbitals: dm = {} for bl in gf_struct_temp: bln = bl[0] ind = bl[1] # get dm for the blocks: dm[bln] = numpy.zeros([len(ind),len(ind)],numpy.complex_) for i in range(len(ind)): for j in range(len(ind)): # TODELETE dm[bln][i,j] = dens_mat[ish][self.map_inv[ish][bln]][ind[i],ind[j]] dm[bln][i,j] = dens_mat[ish][self.solver_to_sumk_block[ish][bln]][ind[i],ind[j]] for bl in gf_struct_temp: for bl2 in gf_struct_temp: if (dm[bl[0]].shape==dm[bl2[0]].shape) : if ( ( (abs(dm[bl[0]]-dm[bl2[0]])=0)): self.deg_shells[ish][ind2].append(bl[0]) elif ((ind1>=0)and(ind2<0)): self.deg_shells[ish][ind1].append(bl2[0]) elif ((ind1<0)and(ind2<0)): self.deg_shells[ish].append([bl[0],bl2[0]]) things_to_save=['gf_struct_solver','map','map_inv','deg_shells'] self.save(things_to_save) return dens_mat def symm_deg_gf(self,gf_to_symm,orb): """Symmetrises a GF for the given degenerate shells self.deg_shells""" for degsh in self.deg_shells[orb]: #loop over degenerate shells: ss = gf_to_symm[degsh[0]].copy() ss.zero() Ndeg = len(degsh) for bl in degsh: ss += gf_to_symm[bl] / (1.0*Ndeg) for bl in degsh: gf_to_symm[bl] << ss # for simply dft input, get crystal field splittings. def eff_atomic_levels(self): """Calculates the effective atomic levels needed as input for the Hubbard I Solver.""" # define matrices for inequivalent shells: eff_atlevels = [ {} for ish in range(self.n_inequiv_corr_shells) ] for ish in range(self.n_inequiv_corr_shells): for bn in self.spin_block_names[self.corr_shells[self.invshellmap[ish]][4]]: eff_atlevels[ish][bn] = numpy.identity(self.corr_shells[self.invshellmap[ish]][3], numpy.complex_) # Chemical Potential: for ish in xrange(self.n_inequiv_corr_shells): for ii in eff_atlevels[ish]: eff_atlevels[ish][ii] *= -self.chemical_potential # double counting term: #if hasattr(self,"dc_imp"): for ish in xrange(self.n_inequiv_corr_shells): for ii in eff_atlevels[ish]: eff_atlevels[ish][ii] -= self.dc_imp[self.invshellmap[ish]][ii] # sum over k: if not hasattr(self,"Hsumk"): # calculate the sum over k. Does not depend on mu, so do it only once: self.Hsumk = [ {} for ish in range(self.n_corr_shells) ] for icrsh in range(self.n_corr_shells): for bn in self.spin_block_names[self.corr_shells[icrsh][4]]: dim = self.corr_shells[icrsh][3] #*(1+self.corr_shells[icrsh][4]) self.Hsumk[icrsh][bn] = numpy.zeros([dim,dim],numpy.complex_) for icrsh in range(self.n_corr_shells): dim = self.corr_shells[icrsh][3] for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]): isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn] for ik in xrange(self.n_k): n_orb = self.n_orbitals[ik,isp] MMat = numpy.identity(n_orb, numpy.complex_) MMat = self.hopping[ik,isp,0:n_orb,0:n_orb] - (1-2*ibl) * self.h_field * MMat projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb] self.Hsumk[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(projmat,MMat), projmat.conjugate().transpose() ) # symmetrisation: if (self.symm_op!=0): self.Hsumk = self.symmcorr.symmetrize(self.Hsumk) # Rotate to local coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): for bn in self.Hsumk[icrsh]: if (self.rot_mat_time_inv[icrsh]==1): self.Hsumk[icrsh][bn] = self.Hsumk[icrsh][bn].conjugate() #if (self.corr_shells[icrsh][4]==0): self.Hsumk[icrsh][bn] = self.Hsumk[icrsh][bn].conjugate() self.Hsumk[icrsh][bn] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),self.Hsumk[icrsh][bn]) , self.rot_mat[icrsh] ) # add to matrix: for ish in xrange(self.n_inequiv_corr_shells): for bn in eff_atlevels[ish]: eff_atlevels[ish][bn] += self.Hsumk[self.invshellmap[ish]][bn] return eff_atlevels def __init_dc(self): # construct the density matrix dm_imp and double counting arrays #self.dm_imp = [ {} for i in xrange(self.n_corr_shells)] self.dc_imp = [ {} for i in xrange(self.n_corr_shells)] for i in xrange(self.n_corr_shells): l = self.corr_shells[i][3] for j in xrange(len(self.gf_struct_sumk[i])): self.dc_imp[i]['%s'%self.gf_struct_sumk[i][j][0]] = numpy.zeros([l,l],numpy.float_) self.dc_energ = [0.0 for i in xrange(self.n_corr_shells)] def set_dc(self,dens_mat,U_interact,J_hund,orb=0,use_dc_formula=0,use_val=None): """Sets the double counting term for inequiv orbital orb: use_dc_formula=0: LDA+U FLL double counting, use_dc_formula=1: Held's formula, use_dc_formula=2: AMF. Be sure that you are using the correct interaction Hamiltonian!""" for icrsh in xrange(self.n_corr_shells): iorb = self.shellmap[icrsh] # iorb is the index of the inequivalent shell corresponding to icrsh if (iorb==orb): # do this orbital Ncr = {} l = self.corr_shells[icrsh][3] #*(1+self.corr_shells[icrsh][4]) for j in xrange(len(self.gf_struct_sumk[icrsh])): self.dc_imp[icrsh]['%s'%self.gf_struct_sumk[icrsh][j][0]] = numpy.identity(l,numpy.float_) blname = self.gf_struct_sumk[icrsh][j][0] Ncr[blname] = 0.0 for block,inner in self.gf_struct_solver[iorb].iteritems(): # TODELETE bl = self.map_inv[iorb][block] bl = self.solver_to_sumk_block[iorb][block] Ncr[bl] += dens_mat[block].real.trace() M = self.corr_shells[icrsh][3] Ncrtot = 0.0 block_ind_list = [block for block,inner in self.gf_struct_sumk[icrsh]] for bl in block_ind_list: Ncrtot += Ncr[bl] # average the densities if there is no SP: if (self.SP==0): for bl in block_ind_list: Ncr[bl] = Ncrtot / len(block_ind_list) # correction for SO: we have only one block in this case, but in DC we need N/2 elif (self.SP==1 and self.SO==1): for bl in block_ind_list: Ncr[bl] = Ncrtot / 2.0 if (use_val is None): if (use_dc_formula==0): # FLL self.dc_energ[icrsh] = U_interact / 2.0 * Ncrtot * (Ncrtot-1.0) for bl in block_ind_list: Uav = U_interact*(Ncrtot-0.5) - J_hund*(Ncr[bl] - 0.5) self.dc_imp[icrsh][bl] *= Uav self.dc_energ[icrsh] -= J_hund / 2.0 * (Ncr[bl]) * (Ncr[bl]-1.0) mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals()) elif (use_dc_formula==1): # Held's formula, with U_interact the interorbital onsite interaction self.dc_energ[icrsh] = (U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) / 2.0 * Ncrtot * (Ncrtot-1.0) for bl in block_ind_list: Uav =(U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) * (Ncrtot-0.5) self.dc_imp[icrsh][bl] *= Uav mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals()) elif (use_dc_formula==2): # AMF self.dc_energ[icrsh] = 0.5 * U_interact * Ncrtot * Ncrtot for bl in block_ind_list: Uav = U_interact*(Ncrtot - Ncr[bl]/M) - J_hund * (Ncr[bl] - Ncr[bl]/M) self.dc_imp[icrsh][bl] *= Uav self.dc_energ[icrsh] -= (U_interact + (M-1)*J_hund)/M * 0.5 * Ncr[bl] * Ncr[bl] mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals()) # output: mpi.report("DC energy for shell %s = %s"%(icrsh,self.dc_energ[icrsh])) else: block_ind_list = [block for block,inner in self.gf_struct_sumk[icrsh]] for bl in block_ind_list: self.dc_imp[icrsh][bl] *= use_val self.dc_energ[icrsh] = use_val * Ncrtot # output: mpi.report("DC for shell %(icrsh)i = %(use_val)f"%locals()) mpi.report("DC energy = %s"%self.dc_energ[icrsh]) def put_Sigma(self, Sigma_imp): """Puts the impurity self energies for inequivalent atoms into the class, respects the multiplicity of the atoms.""" assert isinstance(Sigma_imp,list), "Sigma_imp has to be a list of Sigmas for the correlated shells, even if it is of length 1!" assert len(Sigma_imp)==self.n_inequiv_corr_shells, "give exactly one Sigma for each inequivalent corr. shell!" # init self.Sigma_imp: if all(type(gf) == GfImFreq for bname,gf in Sigma_imp[0]): # Imaginary frequency Sigma: self.Sigma_imp = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = Sigma_imp[0].mesh)) for block,inner in self.gf_struct_sumk[i] ], make_copies = False) for i in xrange(self.n_corr_shells) ] elif all(type(gf) == GfReFreq for bname,gf in Sigma_imp[0]): # Real frequency Sigma: self.Sigma_imp = [ BlockGf( name_block_generator = [ (block,GfReFreq(indices = inner, mesh = Sigma_imp[0].mesh)) for block,inner in self.gf_struct_sumk[i] ], make_copies = False) for i in xrange(self.n_corr_shells) ] else: raise ValueError, "This type of Sigma is not handled." # transform the CTQMC blocks to the full matrix: for icrsh in xrange(self.n_corr_shells): ish = self.shellmap[icrsh] # ish is the index of the inequivalent shell corresponding to icrsh ######## START TODELETE # # setting up the index map: # map_ind={} # cnt = {} # for blname in self.map[ish]: # cnt[blname] = 0 # # for block,inner in self.gf_struct_solver[ish].iteritems(): ## TODELETE blname = self.map_inv[ish][block] # blname = self.solver_to_sumk_block[ish][block] # map_ind[block] = range(len(inner)) # for i in inner: # map_ind[block][i] = cnt[blname] # cnt[blname]+=1 # print "map_ind =", map_ind #FIXME ######## END TODELETE # for block,inner in self.gf_struct_solver[ish].iteritems(): # for i in range(len(inner)): # for j in range(len(inner)): # ind1 = inner[i] # ind2 = inner[j] for block,inner in self.gf_struct_solver[ish].iteritems(): for ind1 in inner: for ind2 in inner: # ind1 = inner[i] # ind2 = inner[j] # TODELETE ind1_imp = map_ind[block][ind1] # TODELETE ind2_imp = map_ind[block][ind2] block_imp,ind1_imp = self.solver_to_sumk[ish][(block,ind1)] block_imp,ind2_imp = self.solver_to_sumk[ish][(block,ind2)] # TODELETE self.Sigma_imp[icrsh][self.map_inv[ish][block]][ind1_imp,ind2_imp] << Sigma_imp[ish][block][ind1,ind2] # TODELETE self.Sigma_imp[icrsh][self.solver_to_sumk_block[ish][block]][ind1_imp,ind2_imp] << Sigma_imp[ish][block][ind1,ind2] self.Sigma_imp[icrsh][block_imp][ind1_imp,ind2_imp] << Sigma_imp[ish][block][ind1,ind2] # rotation from local to global coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): for bname,gf in self.Sigma_imp[icrsh]: self.Sigma_imp[icrsh][bname] << self.rotloc(icrsh,gf,direction='toGlobal') def add_dc(self): """Substracts the double counting term from the impurity self energy.""" # Be careful: Sigma_imp is already in the global coordinate system!! sres = [s.copy() for s in self.Sigma_imp] for icrsh in xrange(self.n_corr_shells): for bname,gf in sres[icrsh]: # Transform dc_imp to global coordinate system dccont = numpy.dot(self.rot_mat[icrsh],numpy.dot(self.dc_imp[icrsh][bname],self.rot_mat[icrsh].conjugate().transpose())) sres[icrsh][bname] -= dccont return sres # list of self energies corrected by DC def set_mu(self,mu): """Sets a new chemical potential""" self.chemical_potential = mu def total_density(self, mu): """ Calculates the total charge for the energy window for a given mu. Since in general n_orbitals depends on k, the calculation is done in the following order: G_aa'(k,iw) -> n(k) = Tr G_aa'(k,iw) -> sum_k n_k mu: chemical potential The calculation is done in the global coordinate system, if distinction is made between local/global! """ dens = 0.0 ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): S = self.lattice_gf_matsubara(ik=ik,mu=mu) dens += self.bz_weights[ik] * S.total_density() # collect data from mpi: dens = mpi.all_reduce(mpi.world,dens,lambda x,y : x+y) mpi.barrier() return dens def find_mu(self, precision = 0.01): """ Searches for mu in order to give the desired charge A desired precision can be specified in precision. """ F = lambda mu : self.total_density(mu = mu) density = self.density_required - self.charge_below self.chemical_potential = dichotomy.dichotomy(function = F, x_init = self.chemical_potential, y_value = density, precision_on_y = precision, delta_x = 0.5, max_loops = 100, x_name = "Chemical Potential", y_name = "Total Density", verbosity = 3)[0] return self.chemical_potential def extract_G_loc(self, mu=None, with_Sigma = True): """ Extracts the local downfolded Green function at the chemical potential of the class. At the end, the local G is rotated from the global coordinate system to the local system. if with_Sigma = False: Sigma is not included => non-interacting local GF """ if (mu is None): mu = self.chemical_potential Gloc = [ self.Sigma_imp[icrsh].copy() for icrsh in xrange(self.n_corr_shells) ] # this list will be returned for icrsh in xrange(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero beta = Gloc[0].mesh.beta ikarray=numpy.array(range(self.n_k)) for ik in mpi.slice_array(ikarray): S = self.lattice_gf_matsubara(ik=ik,mu=mu,with_Sigma = with_Sigma, beta = beta) S *= self.bz_weights[ik] for icrsh in xrange(self.n_corr_shells): tmp = Gloc[icrsh].copy() # init temporary storage for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,S[bname],gf) Gloc[icrsh] += tmp #collect data from mpi: for icrsh in xrange(self.n_corr_shells): Gloc[icrsh] << mpi.all_reduce(mpi.world,Gloc[icrsh],lambda x,y : x+y) mpi.barrier() # Gloc[:] is now the sum over k projected to the local orbitals. # here comes the symmetrisation, if needed: if (self.symm_op!=0): Gloc = self.symmcorr.symmetrize(Gloc) # Gloc is rotated to the local coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal') # transform to CTQMC blocks: Glocret = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = Gloc[0].mesh)) for block,inner in self.gf_struct_solver[ish].iteritems() ], make_copies = False) for ish in xrange(self.n_inequiv_corr_shells) ] for ish in xrange(self.n_inequiv_corr_shells): # # setting up the index map: # map_ind={} # cnt = {} # for blname in self.map[ish]: # cnt[blname] = 0 # # for block,inner in self.gf_struct_solver[ish].iteritems(): ## TODELETE blname = self.map_inv[ish][block] # blname = self.solver_to_sumk_block[ish][block] # map_ind[block] = range(len(inner)) # for i in inner: # map_ind[block][i] = cnt[blname] # cnt[blname]+=1 for block,inner in self.gf_struct_solver[ish].iteritems(): # for i in range(len(inner)): # for j in range(len(inner)): for ind1 in inner: for ind2 in inner: # ind1 = inner[i] # ind2 = inner[j] # ind1_imp = map_ind[block][ind1] # ind2_imp = map_ind[block][ind2] block_imp,ind1_imp = self.solver_to_sumk[ish][(block,ind1)] block_imp,ind2_imp = self.solver_to_sumk[ish][(block,ind2)] # TODELETE Glocret[ish][block][ind1,ind2] << Gloc[self.invshellmap[ish]][self.map_inv[ish][block]][ind1_imp,ind2_imp] # Glocret[ish][block][ind1,ind2] << Gloc[self.invshellmap[ish]][self.solver_to_sumk_block[ish][block]][ind1_imp,ind2_imp] Glocret[ish][block][ind1,ind2] << Gloc[self.invshellmap[ish]][block_imp][ind1_imp,ind2_imp] # return only the inequivalent shells: return Glocret def calc_density_correction(self,filename = 'dens_mat.dat'): """ Calculates the density correction in order to feed it back to the DFT calculations.""" assert (type(filename)==StringType), "filename has to be a string!" ntoi = self.spin_names_to_ind[self.SO] bln = self.spin_block_names[self.SO] # Set up deltaN: deltaN = {} for b in bln: deltaN[b] = [ numpy.zeros( [self.n_orbitals[ik,ntoi[b]],self.n_orbitals[ik,ntoi[b]]], numpy.complex_) for ik in range(self.n_k)] ikarray=numpy.array(range(self.n_k)) dens = {} for b in bln: dens[b] = 0.0 for ik in mpi.slice_array(ikarray): S = self.lattice_gf_matsubara(ik=ik,mu=self.chemical_potential) for bname,gf in S: deltaN[bname][ik] = S[bname].density() dens[bname] += self.bz_weights[ik] * S[bname].total_density() #put mpi Barrier: for bname in deltaN: for ik in range(self.n_k): deltaN[bname][ik] = mpi.all_reduce(mpi.world,deltaN[bname][ik],lambda x,y : x+y) dens[bname] = mpi.all_reduce(mpi.world,dens[bname],lambda x,y : x+y) mpi.barrier() # now save to file: if (mpi.is_master_node()): if (self.SP==0): f=open(filename,'w') else: f=open(filename+'up','w') f1=open(filename+'dn','w') # write chemical potential (in Rydberg): f.write("%.14f\n"%(self.chemical_potential/self.energy_unit)) if (self.SP!=0): f1.write("%.14f\n"%(self.chemical_potential/self.energy_unit)) # write beta in ryderg-1 f.write("%.14f\n"%(S.mesh.beta*self.energy_unit)) if (self.SP!=0): f1.write("%.14f\n"%(S.mesh.beta*self.energy_unit)) if (self.SP==0): # no spin-polarization for ik in range(self.n_k): f.write("%s\n"%self.n_orbitals[ik,0]) for inu in range(self.n_orbitals[ik,0]): for imu in range(self.n_orbitals[ik,0]): valre = (deltaN['up'][ik][inu,imu].real + deltaN['down'][ik][inu,imu].real) / 2.0 valim = (deltaN['up'][ik][inu,imu].imag + deltaN['down'][ik][inu,imu].imag) / 2.0 f.write("%.14f %.14f "%(valre,valim)) f.write("\n") f.write("\n") f.close() elif (self.SP==1): # with spin-polarization # dict of filename : (spin index, block_name) if self.SO==0: to_write = {f: (0, 'up'), f1: (1, 'down')} if self.SO==1: to_write = {f: (0, 'ud'), f1: (0, 'ud')} for fout in to_write.iterkeys(): isp, bn = to_write[fout] for ik in range(self.n_k): fout.write("%s\n"%self.n_orbitals[ik,isp]) for inu in range(self.n_orbitals[ik,isp]): for imu in range(self.n_orbitals[ik,isp]): fout.write("%.14f %.14f "%(deltaN[bn][ik][inu,imu].real,deltaN[bn][ik][inu,imu].imag)) fout.write("\n") fout.write("\n") fout.close() return deltaN, dens ################ # FIXME LEAVE UNDOCUMENTED ################ # FIXME Merge with find_mu? def find_mu_nonint(self, dens_req, orb = None, beta = 40, precision = 0.01): def F(mu): gnonint = self.extract_G_loc(mu=mu,with_Sigma=False) if (orb is None): dens = 0.0 for ish in range(self.n_inequiv_corr_shells): dens += gnonint[ish].total_density() else: dens = gnonint[orb].total_density() return dens self.chemical_potential = dichotomy.dichotomy(function = F, x_init = self.chemical_potential, y_value = dens_req, precision_on_y = precision, delta_x = 0.5, max_loops = 100, x_name = "Chemical Potential", y_name = "Total Density", verbosity = 3)[0] return self.chemical_potential def find_dc(self,orb,guess,dens_mat,dens_req=None,precision=0.01): """Searches for DC in order to fulfill charge neutrality. If dens_req is given, then DC is set such that the LOCAL charge of orbital orb coincides with dens_req.""" mu = self.chemical_potential def F(dc): self.set_dc(dens_mat=dens_mat,U_interact=0,J_hund=0,orb=orb,use_val=dc) if (dens_req is None): return self.total_density(mu=mu) else: return self.extract_G_loc()[orb].total_density() if (dens_req is None): density = self.density_required - self.charge_below else: density = dens_req dcnew = dichotomy.dichotomy(function = F, x_init = guess, y_value = density, precision_on_y = precision, delta_x=0.5, max_loops = 100, x_name="Double-Counting", y_name= "Total Density", verbosity = 3)[0] return dcnew # FIXME Check that dens matrix from projectors (DM=PPdagger) is correct (ie matches DFT) def check_projectors(self): dens_mat = [numpy.zeros([self.corr_shells[ish][3],self.corr_shells[ish][3]],numpy.complex_) for ish in range(self.n_corr_shells)] for ik in range(self.n_k): for ish in range(self.n_corr_shells): dim = self.corr_shells[ish][3] n_orb = self.n_orbitals[ik,0] projmat = self.proj_mat[ik,0,ish,0:dim,0:n_orb] dens_mat[ish][:,:] += numpy.dot(projmat, projmat.transpose().conjugate()) * self.bz_weights[ik] if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat) # Rotate to local coordinate system: if (self.use_rotations): for icrsh in xrange(self.n_corr_shells): if (self.rot_mat_time_inv[icrsh]==1): dens_mat[icrsh] = dens_mat[icrsh].conjugate() dens_mat[icrsh] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh]) , self.rot_mat[icrsh] ) return dens_mat # FIXME DETERMINE EQUIVALENCY OF SHELLS def sorts_of_atoms(self,lst): """ This routine should determine the number of sorts in the double list lst """ sortlst = [ lst[i][1] for i in xrange(len(lst)) ] sortlst.sort() sorts = 1 for i in xrange(len(sortlst)-1): if sortlst[i+1]>sortlst[i]: sorts += 1 return sorts def number_of_atoms(self,lst): """ This routine should determine the number of atoms in the double list lst """ atomlst = [ lst[i][0] for i in xrange(len(lst)) ] atomlst.sort() atoms = 1 for i in xrange(len(atomlst)-1): if atomlst[i+1]>atomlst[i]: atoms += 1 return atoms ############################## # DUPLICATED, NEED TO REMOVE # ############################## def inequiv_shells(self,lst): """ The number of inequivalent shells is calculated from lst, and a mapping is given as shellmap(i_corr_shells) = i_inequiv_corr_shells invshellmap(i_inequiv_corr_shells) = i_corr_shells in order to put the Self energies to all equivalent shells, and for extracting Gloc """ tmp = [] self.shellmap = [0 for i in range(len(lst))] self.invshellmap = [0] self.n_inequiv_corr_shells = 1 tmp.append( lst[0][1:3] ) if (len(lst)>1): for i in range(len(lst)-1): fnd = False for j in range(self.n_inequiv_corr_shells): if (tmp[j]==lst[i+1][1:3]): fnd = True self.shellmap[i+1] = j if (fnd==False): self.shellmap[i+1] = self.n_inequiv_corr_shells self.n_inequiv_corr_shells += 1 tmp.append( lst[i+1][1:3] ) self.invshellmap.append(i+1)