c ****************************************************************************** c c TRIQS: a Toolbox for Research in Interacting Quantum Systems c c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn c c TRIQS is free software: you can redistribute it and/or modify it under the c terms of the GNU General Public License as published by the Free Software c Foundation, either version 3 of the License, or (at your option) any later c version. c c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more c details. c c You should have received a copy of the GNU General Public License along with c TRIQS. If not, see <http://www.gnu.org/licenses/>. c c *****************************************************************************/ SUBROUTINE set_projections(e1,e2) C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine sets up the projection matrices in the energy %% C %% window [e1,e2]. If proj_mode is 1 or 2 then e1 and e2 are not %% C %% energies, but directly used as band indices. %% C %% Two types of projection can be defined : %% C %% - The projectors <u_orb|ik,ib,is> for the correlated orbital %% C %% only. (orb = iatom,is,m) %% C %% (They are stored in the table pr_crorb) %% C %% - The Theta projectors <theta_orb|k,ib> for all the orbitals %% C %% (They are stored in the table pr_orb) %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Definiton of the variables : C ---------------------------- C USE almblm_data USE common_data USE prnt USE projections USE reps USE symm IMPLICIT NONE C REAL(KIND=8) :: e1, e2 INTEGER :: iorb, icrorb, ik, is, ib, m, l, lm, nbbot, nbtop INTEGER :: isrt, n, ilo, iatom, i, imu, jatom, jorb,isym, jcrorb LOGICAL :: included,param COMPLEX(KIND=8), DIMENSION(:), ALLOCATABLE :: coeff COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_mat COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_matbis COMPLEX(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: tmp_matn C C C WRITE(buf,'(a)')'Creation of the projectors...' CALL printout(0) C C C ====================================================================== C Selection of the bands which lie in the chosen energy window [e1;e2] C or if proj_mode = [1,2] e1 and e2 are directly used as band indices: C ====================================================================== C IF(proj_mode.gt.0) THEN C The same number of bands are included at each k-point kp(:,:)%included=.TRUE. C Use directly e1 and e2 as band indices. Set to nbmin or C nbmax if too small or too large DO is=1,ns DO ik=1,nk IF(e1 > kp(ik,is)%nbmin) THEN kp(ik,is)%nb_bot=INT(e1) ELSE kp(ik,is)%nb_bot=kp(ik,is)%nbmin ENDIF IF(e2 < kp(ik,is)%nbmax) THEN kp(ik,is)%nb_top=INT(e2) ELSE kp(ik,is)%nb_top=kp(ik,is)%nbmax ENDIF ENDDO ENDDO ELSE kp(:,:)%included=.FALSE. C the field kp%included = boolean which is .TRUE. when there is at least one band C at this k-point whose energy eignevalue is in the energy window. DO is=1,ns DO ik=1,nk included=.FALSE. DO ib=kp(ik,is)%nbmin,kp(ik,is)%nbmax IF(.NOT.included.AND.kp(ik,is)%eband(ib) > e1.AND. & kp(ik,is)%eband(ib).LE.e2) THEN C If the energy eigenvalue E of the band ib at the k-point ik is such that e1 < E =< e2, C then all the band with ib1>ib must be "included" in the computation and kp%nb_bot is initialized at the value ib. included=.TRUE. kp(ik,is)%nb_bot=ib ELSEIF(included.AND.kp(ik,is)%eband(ib) > e2) THEN C If the energy eigenvalue E of the current band ib at the k-point ik is such that E > e2 and all the previous C band are "included", then the field kp%included = .TRUE. and kp%nb_top = ib-1 (the index of the previous band) kp(ik,is)%nb_top=ib-1 kp(ik,is)%included=.TRUE. EXIT C The loop on the band ib is stopped, since all the bands after ib have an energy > that of ib. ELSEIF(ib==kp(ik,is)%nbmax.AND.kp(ik,is)%eband(ib) & > e1.AND.kp(ik,is)%eband(ib).LE.e2) THEN C If the energy eigenvalue E of the last band ib=kp%nbmax at the k-point ik is such that e1 < E =< e2 and all the C previous bands are "included", then the band ib must be "included" and kp%nb_bot is initialized at the value kp%nbmax. kp(ik,is)%nb_top=ib kp(ik,is)%included=.TRUE. ENDIF C If the eigenvalues of the bands at the k-point ik are < e1 and included=.FALSE. C of if the eigenvalues of the bands at the k-point ik are in the energy window [e1,e2] and included=.TRUE., C nothing is done... ENDDO ! End of the ib loop C If all the eigenvalues of the bands at the k-point ik are not in the window, C then kp%included remains at the value .FALSE. and the field kp%nb_top and kp%nb_bot are set to 0 IF (.not.kp(ik,is)%included) THEN kp(ik,is)%nb_bot=0 kp(ik,is)%nb_top=0 ENDIF ENDDO ! End of the ik loop ENDDO ! End of the is loop ENDIF C --------------------------------------------------------------------------------------- C Checking of the input files if spin-polarized inputs and SO is taken into account: C There should not be any difference between up and dn limits for each k-point. C Printing a Warning if this is not the case. C ------------------- C IF (ifSP.AND.ifSO) THEN param=.TRUE. DO ik=1,nk param=param.AND.(kp(ik,1)%included.eqv.kp(ik,2)%included) param=param.AND.(kp(ik,1)%nb_bot==kp(ik,2)%nb_bot) param=param.AND.(kp(ik,1)%nb_top==kp(ik,2)%nb_top) IF (.not.param) EXIT C For a valid compoutation, the same k-points must be included for up and dn states, C and the upper and lower limits must be the same in both case. ENDDO IF (.not.param) THEN WRITE(buf,'(a,a)')'A Spin-orbit computation for this', & ' compound is not possible with these input files.' CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP ENDIF ENDIF C --------------------------------------------------------------------------------------- C C C ================================================================== C Orthonormalization of the radial wave functions for each orbital : C ================================================================== C C This step is essential for setting the Theta projectors. IF(.NOT.ALLOCATED(norm_radf)) THEN ALLOCATE(norm_radf(norb)) C norm_radf is a table of "ortfunc" elements, its size ranges from 1 to norb. DO iorb=1,norb l=orb(iorb)%l isrt=orb(iorb)%sort norm_radf(iorb)%n=nLO(l,isrt)+2 n=norm_radf(iorb)%n ALLOCATE(norm_radf(iorb)%s12(n,n,ns)) C norm_radf%n = size of the matrix s12 C norm_radf%s12 = matrix of size n*n (one for spin up, one for spin down, if necessary) DO is=1,ns norm_radf(iorb)%s12(1:n,1:n,is)=0d0 norm_radf(iorb)%s12(1,1,is)=1d0 norm_radf(iorb)%s12(2,2,is)=u_dot_norm(l,isrt,is) C Initialization of the matrix norm_radf%s12 for each orbital (l,isrt). C We remind tha it is assumed that nLO has the value 0 or 1 only !! DO ilo=1,nLO(l,isrt) norm_radf(iorb)%s12(2+ilo,2+ilo,is)=1d0 norm_radf(iorb)%s12(2+ilo,1,is)= = ovl_LO_u(ilo,l,isrt,is) norm_radf(iorb)%s12(1,2+ilo,is)= = ovl_LO_u(ilo,l,isrt,is) norm_radf(iorb)%s12(2+ilo,2,is)= = ovl_LO_udot(ilo,l,isrt,is) norm_radf(iorb)%s12(2,2+ilo,is)= = ovl_LO_udot(ilo,l,isrt,is) ENDDO C Computation of the square root of norm_radf: CALL orthogonal_r(norm_radf(iorb)% & s12(1:n,1:n,is),n,.FALSE.) C the field norm_radf%s12 is finally the C matrix described in the tutorial (or in equation (3.63) in my thesis) ENDDO ENDDO ENDIF C C ===================================== C Creation of the projection matrices : C ===================================== C IF(.NOT.ALLOCATED(pr_orb)) THEN ALLOCATE(pr_crorb(ncrorb,nk,ns)) ALLOCATE(pr_orb(norb,nk,ns)) ENDIF C pr_crorb = table of "proj_mat" elements for the correlated orbitals (size from 1 to ncrorb, from 1 to nk, from 1 to ns) C pr_orb = table of "proj_mat_n" elements for all the orbitals (size from 1 to norb, from 1 to nk, from 1 to ns) DO is=1,ns DO ik=1,nk C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,is)%included) CYCLE C ------------------------------------------------ C Wannier Projectors for the correlated orbitals : C ------------------------------------------------ DO icrorb=1,ncrorb l=crorb(icrorb)%l iatom=crorb(icrorb)%atom isrt=crorb(icrorb)%sort C Case of l=0 : C ------------- IF (l==0) THEN IF(ALLOCATED(pr_crorb(icrorb,ik,is)%mat)) THEN DEALLOCATE(pr_crorb(icrorb,ik,is)%mat) ENDIF ALLOCATE(pr_crorb(icrorb,ik,is)% % mat(1,kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) C pr_crorb%mat = the projection matrix with 1 line and (nb_top-nb_bot) columns DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top pr_crorb(icrorb,ik,is)%mat(1,ib)= = kp(ik,is)%Alm(1,iatom,ib) DO ilo=1,nLO(l,isrt) pr_crorb(icrorb,ik,is)%mat(1,ib)= = pr_crorb(icrorb,ik,is)%mat(1,ib)+ + kp(ik,is)%Clm(ilo,1,iatom,ib)* * ovl_LO_u(ilo,l,isrt,is) ENDDO ! End of the ilo loop ENDDO ! End of the ib loop C prcrorb(icrorb,ik,is)%mat(1,ib)= <ul1(icrorb,1,is)|psi(is,ik,ib)> = Alm+Clm*ovl_LO_u C C Case of any other l : C --------------------- ELSE lm=l*l C Since the correlated orbital is the l orbital, the elements range from l*l+1 to (l+1)^2 C the sum from 0 to (l-1) of m (from -l to l) is l^2. IF(ALLOCATED(pr_crorb(icrorb,ik,is)%mat)) THEN DEALLOCATE(pr_crorb(icrorb,ik,is)%mat) ENDIF ALLOCATE(pr_crorb(icrorb,ik,is)% % mat(-l:l,kp(ik,is)%nb_bot:kp(ik,is)%nb_top)) C pr_crorb%mat = the projection matrix with (2*l+1) lines and (nb_top-nb_bot) columns DO m=-l,l lm=lm+1 DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top pr_crorb(icrorb,ik,is)%mat(m,ib)= = kp(ik,is)%Alm(lm,iatom,ib) DO ilo=1,nLO(l,isrt) pr_crorb(icrorb,ik,is)%mat(m,ib)= = pr_crorb(icrorb,ik,is)%mat(m,ib)+ + kp(ik,is)%Clm(ilo,lm,iatom,ib)* * ovl_LO_u(ilo,l,isrt,is) ENDDO ! End of the ilo loop ENDDO ! End of the ib loop ENDDO ! End of the m loop C prcrorb(icrorb,ik,is)%mat(m,ib)= <ul1(icrorb,m,is)|psi(is,ik,ib)> = Alm+Clm*ovl_LO_u ENDIF ! End of the if l=0 if-then-else ENDDO ! End of the icrorb loop C C --------------------------------------- C Theta Projectors for all the orbitals : C --------------------------------------- DO iorb=1,norb l=orb(iorb)%l n=norm_radf(iorb)%n iatom=orb(iorb)%atom C Case of l=0 : C ------------- IF (l==0) THEN IF(ALLOCATED(pr_orb(iorb,ik,is)%matn)) THEN DEALLOCATE(pr_orb(iorb,ik,is)%matn) ENDIF ALLOCATE(pr_orb(iorb,ik,is)% % matn(1,kp(ik,is)%nb_bot:kp(ik,is)%nb_top,n)) ALLOCATE(coeff(1:n)) C pr_orb%matn = the projection matrix with 1 line and (nb_top-nb_bot) columns for the n (size of s12) coefficients C coeff = table of size n which will contain the decomposition of the Bloch state |psi_ik,ib,is> C as in equation 22 of the tutorial (Alm, Blm, and Clm ) DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top coeff(1)=kp(ik,is)%Alm(1,iatom,ib) coeff(2)=kp(ik,is)%Blm(1,iatom,ib) coeff(3:n)=kp(ik,is)%Clm(1:n-2,1,iatom,ib) coeff=MATMUL(coeff,norm_radf(iorb)%s12(1:n,1:n,is)) C coeff = coefficients c_(j,lm) of the decomposition of the state |psi> in the orthogonalized basis |phi_j> C as defined in the tutorial (equation 25) pr_orb(iorb,ik,is)%matn(1,ib,1:n)=coeff(1:n) ENDDO DEALLOCATE(coeff) C pr_orb(iorb,ik,is)%matn(m,ib,1:n) is then the Theta projector as defined in equation 26 of the tutorial. C C Case of any other l : C --------------------- ELSE lm=l*l C As the orbital is the l orbital, the elements range from l*l+1 to (l+1)^2 C the sum from 0 to (l-1) of m (from -l to l) is l^2. IF(ALLOCATED(pr_orb(iorb,ik,is)%matn)) THEN DEALLOCATE(pr_orb(iorb,ik,is)%matn) ENDIF ALLOCATE(pr_orb(iorb,ik,is)% % matn(-l:l,kp(ik,is)%nb_bot:kp(ik,is)%nb_top,n)) ALLOCATE(coeff(1:n)) C pr_orb%matn = the projection matrix with (2*l+1) lines and (nb_top-nb_bot) columns for the n (size of s12) coefficients C coeff = table of size n which will contain the decomposition of the Bloch state |psi_ik,ib,is> C as in equation 22 of the tutorial (Alm, Blm, and Clm ) DO m=-l,l lm=lm+1 DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top coeff(1)=kp(ik,is)%Alm(lm,iatom,ib) coeff(2)=kp(ik,is)%Blm(lm,iatom,ib) coeff(3:n)=kp(ik,is)%Clm(1:n-2,lm,iatom,ib) coeff=MATMUL(coeff, & norm_radf(iorb)%s12(1:n,1:n,is)) C coeff = coefficients c_(j,lm) of the decomposition of the state |psi> in the orthogonalized basis |phi_j> C as defined in the tutorial (equation 25) pr_orb(iorb,ik,is)%matn(m,ib,1:n)=coeff(1:n) ENDDO ENDDO ! End of the m loop DEALLOCATE(coeff) C pr_orb(iorb,ik,is)%matn(m,ib,1:n) is then the Theta projector as defined in equation 26 of the tutorial. ENDIF ! End of the if l=0 if-then-else ENDDO ! End of the iorb loop C ENDDO ! End of the loop on ik ENDDO ! End of the loop on is C C C ========================================================================== C Multiplication of the projection matrices by the local rotation matrices : C ========================================================================== C C ------------------------------------------------ C Wannier Projectors for the correlated orbitals : C ------------------------------------------------ C DO jcrorb=1,ncrorb jatom=crorb(jcrorb)%atom isrt=crorb(jcrorb)%sort l=crorb(jcrorb)%l C C The case l=0 is a particular case of "non-mixing" basis. C -------------------------------------------------------- IF (l==0) THEN C For the s orbital, no multiplication is needed, since the matrix representation of any rotation C (and thus Rloc) is always 1. DO ik=1,nk DO is=1,ns C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,is)%included) CYCLE nbtop=kp(ik,is)%nb_top nbbot=kp(ik,is)%nb_bot IF(ALLOCATED(pr_crorb(jcrorb,ik,is)%mat_rep)) THEN DEALLOCATE(pr_crorb(jcrorb,ik,is)%mat_rep) ENDIF ALLOCATE(pr_crorb(jcrorb,ik,is) & %mat_rep(1,nbbot:nbtop)) pr_crorb(jcrorb,ik,is)%mat_rep(1,nbbot:nbtop)= = pr_crorb(jcrorb,ik,is)%mat(1,nbbot:nbtop) C As a result, prcrorb%matrep = prcrorb%mat ENDDO ENDDO C C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) C --------------------------------------------------------------------------------------------------- ELSEIF (reptrans(l,isrt)%ifmixing) THEN C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f) C Moreover ifSP=.TRUE. (since ifSO => ifSP in this version) C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn) DO ik=1,nk C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,1)%included) CYCLE nbbot=kp(ik,1)%nb_bot nbtop=kp(ik,1)%nb_top C In this case, the projection matrix will be stored in prcrorb%matrep with is=1. IF(ALLOCATED(pr_crorb(jcrorb,ik,1)%mat_rep)) THEN DEALLOCATE(pr_crorb(jcrorb,ik,1)%mat_rep) ENDIF ALLOCATE(pr_crorb(jcrorb,ik,1)% % mat_rep(1:2*(2*l+1),nbbot:nbtop)) C The element prcrorb%matrep for is=2 is set to 0, since all the matrix will be stored in the matrix matrep for is=1 IF(.not.ALLOCATED(pr_crorb(jcrorb,ik,2)%mat_rep)) THEN ALLOCATE(pr_crorb(jcrorb,ik,2)%mat_rep(1,1)) pr_crorb(jcrorb,ik,2)%mat_rep(1,1)=0.d0 ENDIF C Creation of a matrix tmp_mat which "concatenates" up and dn parts of pr_crorb. ALLOCATE(tmp_mat(1:2*(2*l+1),nbbot:nbtop)) tmp_mat(1:(2*l+1),nbbot:nbtop)= = pr_crorb(jcrorb,ik,1)%mat(-l:l,nbbot:nbtop) C The first (2l+1) lines are the spin-up part of the projection matrix prcrorb%mat. C C --------------------------------------------------------------------------------------- C Interruption of the prgm if there is no dn part of pr_orb. C ------------------------- C IF(.not.ifSP) THEN WRITE(buf,'(a,a,i2,a)')'The projectors on ', & 'the dn states are required for isrt = ',isrt, & ' but there is no spin-polarized input files.' CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP ENDIF C --------------------------------------------------------------------------------------- C C The last (2l+1) lines are the spin-dn part of the projection matrix prcrorb%mat. tmp_mat((2*l+2):2*(2*l+1),nbbot:nbtop)= = pr_crorb(jcrorb,ik,2)%mat(-l:l,nbbot:nbtop) C C Multiplication by the local rotation matrix ; Up and dn parts are treated independently C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame C but without taking into account the spinor-rotation matrix. ALLOCATE(tmp_matbis(1:(2*l+1),nbbot:nbtop)) tmp_matbis(1:(2*l+1),nbbot:nbtop)= = tmp_mat(1:(2*l+1),nbbot:nbtop) CALL rot_projectmat(tmp_matbis, & l,nbbot,nbtop,jatom,isrt) tmp_mat(1:(2*l+1),nbbot:nbtop)= = tmp_matbis(1:(2*l+1),nbbot:nbtop) tmp_matbis(1:(2*l+1),nbbot:nbtop)= = tmp_mat(2*l+2:2*(2*l+1),nbbot:nbtop) CALL rot_projectmat(tmp_matbis, & l,nbbot,nbtop,jatom,isrt) tmp_mat(2*l+2:2*(2*l+1),nbbot:nbtop)= = tmp_matbis(1:(2*l+1),nbbot:nbtop) DEALLOCATE(tmp_matbis) C C Putting pr_crorb in the desired basis associated to (l,isrt) C pr_crorb(jcrorb,ik,1)%mat_rep(1:2*(2*l+1),nbbot:nbtop)= = MATMUL(reptrans(l,isrt)%transmat & (1:2*(2*l+1),1:2*(2*l+1)), & tmp_mat(1:2*(2*l+1),nbbot:nbtop)) C pr_crorb%mat_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm} DEALLOCATE(tmp_mat) ENDDO ! End of the ik loop C C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) C -------------------------------------------------------------------------------------------- ELSE DO ik=1,nk DO is=1,ns C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,is)%included) CYCLE C In this case, nb_top(up) and nb_bot(up) can differ from nb_top(dn) and nb_bot(dn) nbbot=kp(ik,is)%nb_bot nbtop=kp(ik,is)%nb_top IF(ALLOCATED(pr_crorb(jcrorb,ik,is)%mat_rep)) THEN DEALLOCATE(pr_crorb(jcrorb,ik,is)%mat_rep) ENDIF ALLOCATE(pr_crorb(jcrorb,ik,is) & %mat_rep(-l:l,nbbot:nbtop)) pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)= = pr_crorb(jcrorb,ik,is)%mat(-l:l,nbbot:nbtop) C C Multiplication by the local rotation matrix C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame CALL rot_projectmat(pr_crorb(jcrorb,ik,is) & %mat_rep(-l:l,nbbot:nbtop),l,nbbot,nbtop,jatom,isrt) C C Putting pr_crorb in the desired basis associated to (l,isrt) pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)= = MATMUL(reptrans(l,isrt)%transmat(-l:l,-l:l), & pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)) C pr_crorb%mat_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm} ENDDO ! End of the is loop ENDDO ! End of the ik loop ENDIF ! End of the if mixing if-then-else ENDDO ! End of the jcrorb loop C C --------------------------------------- C Theta Projectors for all the orbitals : C --------------------------------------- C DO jorb=1,norb jatom=orb(jorb)%atom isrt=orb(jorb)%sort n=norm_radf(jorb)%n l=orb(jorb)%l C C The case l=0 is a particular case of "non-mixing" basis. C -------------------------------------------------------- IF (l==0) THEN C For the s orbital, no multiplication is needed, since the matrix representation of any rotation C (and therefore Rloc) is always 1. DO ik=1,nk DO is=1,ns C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,is)%included) CYCLE nbtop=kp(ik,is)%nb_top nbbot=kp(ik,is)%nb_bot IF(ALLOCATED(pr_orb(jorb,ik,is)%matn_rep)) THEN DEALLOCATE(pr_orb(jorb,ik,is)%matn_rep) ENDIF ALLOCATE(pr_orb(jorb,ik,is)%matn_rep & (1,nbbot:nbtop,1:n)) pr_orb(jorb,ik,is)%matn_rep(1,nbbot:nbtop,1:n)= = pr_orb(jorb,ik,is)%matn(1,nbbot:nbtop,1:n) C As a result, prorb%matnrep = prorb%matn ENDDO ENDDO C C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) C --------------------------------------------------------------------------------------------------- ELSEIF (reptrans(l,isrt)%ifmixing) THEN C If this option is used, then ifSO=.TRUE. (restriction in set_ang_trans.f) C Moreover ifSP=.TRUE. (since ifSO => ifSP) C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn) DO ik=1,nk C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,1)%included) CYCLE nbbot=kp(ik,1)%nb_bot nbtop=kp(ik,1)%nb_top C In this case, the projection matrix will be stored in prorb%matnrep with is=1. IF(ALLOCATED(pr_orb(jorb,ik,1)%matn_rep)) THEN DEALLOCATE(pr_orb(jorb,ik,1)%matn_rep) ENDIF ALLOCATE(pr_orb(jorb,ik,1)% % matn_rep(1:2*(2*l+1),nbbot:nbtop,1:n)) C The element prorb%matnrep for is=2 is set to 0, since all the matrix will be stored in the matrix matnrep for is=1 IF(.not.ALLOCATED(pr_orb(jorb,ik,2)%matn_rep)) THEN ALLOCATE(pr_orb(jorb,ik,2)%matn_rep(1,1,1)) pr_orb(jorb,ik,2)%matn_rep(1,1,1)=0.d0 ENDIF C Creation of a matrix tmp_matn which "concatenates" up and dn parts of pr_orb ALLOCATE(tmp_matn(1:2*(2*l+1),nbbot:nbtop,1:n)) tmp_matn(1:(2*l+1),nbbot:nbtop,1:n)= = pr_orb(jorb,ik,1)%matn(-l:l,nbbot:nbtop,1:n) C The first (2l+1) lines are the spin-up part of the projection matrix prorb%matn. C C --------------------------------------------------------------------------------------- C Interruption of the prgm if there is no dn part of pr_orb. C ------------------------- C IF(.not.ifSP) THEN WRITE(buf,'(a,a,i2,a)')'The projectors on ', & 'the down states are required for isrt = ',isrt, & ' but there is no spin-polarized input files.' CALL printout(0) WRITE(buf,'(a)')'END OF THE PRGM' CALL printout(0) STOP ENDIF C --------------------------------------------------------------------------------------- C C The last (2l+1) lines are the spin-dn part of the projection matrix prorb%matn. tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,1:n)= = pr_orb(jorb,ik,2)%matn(-l:l,nbbot:nbtop,1:n) C DO i=1,n C Multiplication by the local rotation matrix ; Up and dn parts are treated independently C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame C but without taking into account the spinor-rotation matrix. ALLOCATE(tmp_matbis(1:(2*l+1),nbbot:nbtop)) tmp_matbis(1:(2*l+1),nbbot:nbtop)= = tmp_matn(1:(2*l+1),nbbot:nbtop,i) CALL rot_projectmat(tmp_matbis, & l,nbbot,nbtop,jatom,isrt) tmp_matn(1:(2*l+1),nbbot:nbtop,i)= = tmp_matbis(1:(2*l+1),nbbot:nbtop) tmp_matbis(1:(2*l+1),nbbot:nbtop)= = tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,i) CALL rot_projectmat(tmp_matbis, & l,nbbot,nbtop,jatom,isrt) tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,i)= = tmp_matbis(1:(2*l+1),nbbot:nbtop) DEALLOCATE(tmp_matbis) C Putting pr_orb in the desired basis associated to (l,isrt) pr_orb(jorb,ik,1)%matn_rep & (1:2*(2*l+1),nbbot:nbtop,i)= = MATMUL(reptrans(l,isrt)% & transmat(1:2*(2*l+1),1:2*(2*l+1)), & tmp_matn(1:2*(2*l+1),nbbot:nbtop,i)) C pr_orb%matn_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm} ENDDO ! End of the i-loop DEALLOCATE(tmp_matn) ENDDO ! End of the ik loop C C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) C -------------------------------------------------------------------------------------------- ELSE DO ik=1,nk DO is=1,ns C Only the k-points with inlcuded bands are considered for the projectors. IF(.NOT.kp(ik,is)%included) CYCLE C In this case, nb_top(up) and nb_bot(up) can differ from nb_top(dn) and nb_bot(dn) nbbot=kp(ik,is)%nb_bot nbtop=kp(ik,is)%nb_top IF(ALLOCATED(pr_orb(jorb,ik,is)%matn_rep)) THEN DEALLOCATE(pr_orb(jorb,ik,is)%matn_rep) ENDIF ALLOCATE(pr_orb(jorb,ik,is)% & matn_rep(-l:l,nbbot:nbtop,1:n)) pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,1:n)= = pr_orb(jorb,ik,is)%matn(-l:l,nbbot:nbtop,1:n) C DO i=1,n C Multiplication by the local rotation matrix C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame CALL rot_projectmat(pr_orb(jorb,ik,is) & %matn_rep(-l:l,nbbot:nbtop,i), & l,nbbot,nbtop,jatom,isrt) C Putting pr_orb in the desired basis associated to (l,isrt) pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,i)= = MATMUL(reptrans(l,isrt)%transmat(-l:l,-l:l), & pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,i)) C pr_orb%matn_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm} ENDDO ! End of the i loop ENDDO ! End of the is loop ENDDO ! End of the ik loop ENDIF ! End of the if mixing if-then-else ENDDO ! End of the jorb loop C C C ============================================================================= C Printing the projectors with k-points 1 and nk in the file fort.18 for test : C ============================================================================= DO icrorb=1,ncrorb iatom=crorb(icrorb)%atom isrt=crorb(icrorb)%sort l=crorb(icrorb)%l WRITE(18,'()') WRITE(18,'(a,i4)') 'icrorb = ', icrorb WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l IF (l==0) THEN WRITE(18,'(a,i4)') 'ik = ', 1 DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib) IF (ifSP) & WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib) WRITE(18,'()') ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib) IF (ifSP) & WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib) WRITE(18,'()') ENDDO ELSEIF (reptrans(l,isrt)%ifmixing) THEN WRITE(18,'(a,i4)') 'ik = ', 1 DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib) WRITE(18,'()') ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib) WRITE(18,'()') ENDDO ELSE WRITE(18,'(a,i4)') 'ik = ', 1 DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib) IF (ifSP) & WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib) WRITE(18,'()') ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib) IF (ifSP) & WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib) WRITE(18,'()') ENDDO ENDIF ENDDO C DO iorb=1,norb iatom=orb(iorb)%atom isrt=orb(iorb)%sort l=orb(iorb)%l n=norm_radf(iorb)%n WRITE(18,'()') WRITE(18,'(a,i4)') 'iorb = ', iorb WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l IF (l==0) THEN WRITE(18,'(a,i4)') 'ik = ', 1 DO i=1,n WRITE(18,'(i4)') i DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i) IF (ifSP) & WRITE(18,*) pr_orb(iorb,1,2)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO i=1,n WRITE(18,'(i4)') i DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i) IF (ifSP) & WRITE(18,*) pr_orb(iorb,nk,2)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO ELSEIF(reptrans(l,isrt)%ifmixing) THEN DO i=1,n WRITE(18,'(i4)') i DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO i=1,n WRITE(18,'(i4)') i DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO ELSE DO i=1,n WRITE(18,'(i4)') i DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i) IF (ifSP) & WRITE(18,*) pr_orb(iorb,1,2)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO WRITE(18,'(a,i4)') 'ik = ', nk DO i=1,n WRITE(18,'(i4)') i DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i) IF (ifSP) & WRITE(18,*) pr_orb(iorb,nk,2)%matn_rep(:,ib,i) WRITE(18,'()') ENDDO ENDDO ENDIF ENDDO C RETURN END