/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_GF_PRODUCT_H
#define TRIQS_GF_PRODUCT_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./meshes/product.hpp"
#include "./evaluators.hpp"
namespace triqs { namespace gfs {
template struct cartesian_product{
typedef std::tuple type;
static constexpr size_t size = sizeof...(Ms);
};
// use alias
template struct cartesian_product > : cartesian_product{};
// the mesh is simply a cartesian product
template struct gf_mesh,Opt> : mesh_product< gf_mesh ... > {
typedef mesh_product< gf_mesh ... > B;
typedef std::tuple mesh_name_t;
gf_mesh() = default;
gf_mesh (gf_mesh ... ms) : B {std::move(ms)...} {}
};
namespace gfs_implementation {
/// --------------------------- hdf5 ---------------------------------
// h5 name : name1_x_name2_.....
template struct h5_name,matrix_valued,Opt> {
static std::string invoke(){
return triqs::tuple::fold(
[](std::string a, std::string b) { return a + std::string(b.empty()?"" : "_x_") + b;},
std::make_tuple(h5_name::invoke()...),
std::string());
}
};
template struct h5_name,tensor_valued,Opt> : h5_name,matrix_valued,Opt> {};
// a slight difference with the generic case : reinterpret the data array to avoid flattening the variables
template
struct h5_rw,tensor_valued,Opt,IsView> {
typedef gf_impl,tensor_valued,Opt,IsView> g_t;
static void write (h5::group gr, g_t const & g) {
h5_write(gr,"data",reinterpret_linear_array(g.mesh(), g().data()));
h5_write(gr,"singularity",g._singularity);
h5_write(gr,"mesh",g._mesh);
h5_write(gr,"symmetry",g._symmetry);
}
static void read (h5::group gr, g_t & g) {
h5_read(gr,"mesh",g._mesh);
auto arr = arrays::array{};
h5_read(gr,"data",arr);
auto sh = arr.shape();
arrays::mini_vector sh2;
sh2[0] = g._mesh.size();
for (int u=1; u{sh2, std::move(arr.storage())};
h5_read(gr,"singularity",g._singularity);
h5_read(gr,"symmetry",g._symmetry);
}
};
/// --------------------------- data access ---------------------------------
template struct data_proxy,scalar_valued,Opt> : data_proxy_array,1> {};
template struct data_proxy,matrix_valued,Opt> : data_proxy_array,3> {};
template struct data_proxy,tensor_valued,Opt> : data_proxy_array,R+1> {};
/// --------------------------- evaluator ---------------------------------
/**
* This the multi-dimensional evaluator.
* It combine the evaluator of each components, as long as they are a linear form
* eval(g, x) = \sum_i w_i g( n_i(x)) , with w some weight and n_i some points on the grid.
* Mathematically, it is written as (example of evaluating g(x1,x2,x3,x4)).
* Notation : eval(X) : g -> g(X)
* eval(x1,x2,x3,x4) (g) = eval (x1) ( binder ( g, (), (x2,x3,x4)) )
* binder( g, (), (x2,x3,x4)) (p1) = eval(x2)(binder (g,(p1),(x3,x4)))
* binder( g, (p1), (x3,x4)) (p2) = eval(x3)(binder (g,(p1,p2),(x4)))
* binder( g, (p1,p2), (x4)) (p3) = eval(x4)(binder (g,(p1,p2,p3),()))
* binder( g, (p1,p2,p3),()) (p4) = g[p1,p2,p3,p4]
*
* p_i are points on the grids, x_i points in the domain.
*
* Unrolling the formula gives (for 2 variables, with 2 points interpolation)
* eval(xa,xb) (g) = eval (xa) ( binder ( g, (), (xb)) ) = w_1(xa) binder ( g, (), (xb))( n_1(xa)) + w_2(xa) binder ( g, (), (xb))( n_2(xa))
* = w_1(xa) ( eval(xb)( binder ( g, (n_1(xa) ), ()))) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * binder ( g, (n_1(xa) ), ())(N_1(xb)) + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + W_2(xb) * g[n_1(xa), N_2(xb)] ) + 1 <-> 2
* which is the expected formula
*/
// implementation : G = gf, Tn : tuple of n points, Ev : tuple of evaluators (the evals functions), pos = counter from #args-1 =>0
// NB : the tuple is build in reverse with respect to the previous comment.
template struct binder;
template
binder make_binder(G const * g, Tn tn, Ev const & ev) { return binder{g, std::move(tn), ev}; }
template struct binder {
G const * g; Tn tn; Ev const & evals;
auto operator()(size_t p) const DECL_AND_RETURN( std::get(evals) ( make_binder(g, triqs::tuple::push_front(tn,p), evals) ));
};
template struct binder {
G const * g; Tn tn; Ev const & evals;
auto operator()(size_t p) const DECL_AND_RETURN( triqs::tuple::apply(on_mesh(*g), triqs::tuple::push_front(tn,p)));
};
// now the multi d evaluator itself.
template
struct evaluator,Target,Opt> {
static constexpr int arity = sizeof...(Ms);
mutable std::tuple< evaluator_fnt_on_mesh ... > evals;
struct _poly_lambda {// replace by a polymorphic lambda in C++14
template void operator()(A & a, B const & b, C const & c) const { a = A{b,c};}
};
template
//std::complex operator() (G const * g, Args && ... args) const {
auto operator() (G const * g, Args && ... args) const
-> decltype (std::get(evals) (make_binder (g, std::make_tuple(), evals) ))
// when do we get C++14 decltype(auto) ...!?
{
static constexpr int R = sizeof...(Args);
// build the evaluators, as a tuple of ( evaluator ( mesh_component, args))
triqs::tuple::call_on_zip(_poly_lambda(), evals, g->mesh().components(), std::make_tuple(args...));
return std::get(evals) (make_binder (g, std::make_tuple(), evals) );
}
};
} // gf_implementation
}}
#endif