/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#ifndef TRIQS_GF_MATSUBARA_TIME_H
#define TRIQS_GF_MATSUBARA_TIME_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./domains/matsubara.hpp"
#include "./meshes/linear.hpp"
namespace triqs { namespace gfs {
struct imtime {};
// gf_mesh type and its factories
template struct gf_mesh : linear_mesh> {
typedef linear_mesh> B;
gf_mesh() = default;
gf_mesh (double beta, statistic_enum S, size_t n_time_slices, mesh_kind mk=half_bins):
B( typename B::domain_t(beta,S), 0, beta, n_time_slices, mk){}
};
namespace gfs_implementation {
// singularity
template struct singularity { typedef local::tail type;};
template struct singularity { typedef local::tail type;};
// h5 name
template struct h5_name { static std::string invoke(){ return "ImTime";}};
/// --------------------------- data access ---------------------------------
template struct data_proxy : data_proxy_array {};
template struct data_proxy : data_proxy_array {};
/// --------------------------- closest mesh point on the grid ---------------------------------
template
struct get_closest_point {
// index_t is size_t
template
static size_t invoke(G const * g, closest_pt_wrap const & p) {
double x = (g->mesh().kind()==half_bins ? double(p.value) : double(p.value)+ 0.5*g->mesh().delta());
size_t n = std::floor(x/g->mesh().delta());
return n;
}
};
/// --------------------------- evaluator ---------------------------------
// NOT TESTED
// TEST THE SPPED when q_view are incorporated...
// true evaluator with interpolation ...
template
ReturnType evaluator_imtime_impl (G const * g, double tau, ReturnType && _tmp) {
// interpolate between n and n+1, with weight
double beta = g->mesh().domain().beta;
int p = std::floor(tau/beta);
tau -= p*beta;
double a = tau/g->mesh().delta();
long n = std::floor(a);
double w = a-n;
assert(n < g->mesh().size()-1);
auto _ = arrays::ellipsis();
if ((g->mesh().domain().statistic == Fermion) && (p%2==1))
_tmp = - w*g->data()(n, _) - (1-w)*g->data()(n+1, _);
else
_tmp = w*g->data()(n, _) + (1-w)*g->data()(n+1, _);
//else { // Speed test to redo when incoparated qview in main branch
// _tmp(0,0) = w*g->data()(n, 0,0) + (1-w)*g->data()(n+1, 0,0);
// _tmp(0,1) = w*g->data()(n, 0,1) + (1-w)*g->data()(n+1, 0,1);
// _tmp(1,0) = w*g->data()(n, 1,0) + (1-w)*g->data()(n+1, 1,0);
// _tmp(1,1) = w*g->data()(n, 1,1) + (1-w)*g->data()(n+1, 1,1);
// }
return _tmp;
}
template
struct evaluator {
private:
mutable arrays::matrix _tmp;
public :
static constexpr int arity = 1;
evaluator() = default;
evaluator(size_t n1, size_t n2) : _tmp(n1,n2) {} // WHAT happen in resize ??
template
arrays::matrix const & operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, _tmp);}
template
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
template
struct evaluator {
public :
static constexpr int arity = 1;
template double operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, 0.0);}
template
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
// ------------------------------- Factories --------------------------------------------------
// matrix_valued
template struct factories {
typedef gf gf_t;
template
static gf_t make_gf(MeshType && m, tqa::mini_vector shape, local::tail_view const & t) {
typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0;
//return gf_t ( m, std::move(A), t, nothing() ) ;
return gf_t (std::forward(m), std::move(A), t, nothing(), evaluator(shape[0],shape[1]) ) ;
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector shape, size_t Nmax=1025, mesh_kind mk= half_bins) {
return make_gf(gf_mesh(beta,S,Nmax,mk), shape, local::tail(shape));
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector shape, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
return make_gf(gf_mesh(beta,S,Nmax,mk), shape, t);
}
};
// scalar_valued
template struct factories {
typedef gf gf_t;
template
static gf_t make_gf(MeshType && m, local::tail_view const & t) {
typename gf_t::data_regular_t A(m.size()); A() =0;
return gf_t (std::forward(m), std::move(A), t, nothing());
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax=1025, mesh_kind mk= half_bins) {
return make_gf(gf_mesh(beta,S,Nmax,mk), local::tail(tqa::mini_vector (1,1)));
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
return make_gf(gf_mesh(beta,S,Nmax,mk), t);
}
};
} // gfs_implementation.
}}
#endif