.. highlight:: c Functional constructs : map & fold ########################################### Two standard functional constructs are provided : * *map* that promotes a function of the array element to a function of the array, element by element. * *fold* is the reduction of a function on the array. .. _map: map ======================================================== * **Purpose** : map promotes any function into an `array function`, acting term by term. * **Synopsis** :: template auto map (F f); If `f` is a function, or a function object :: ValueType2 f(ValueType1) Then map(f) is a function:: ReturnType map(f) ( ArrayType const & A) where ArrayType models the :ref:`ImmutableCuboidArray` concept * with value_type == ValueType1 and ReturnType models the :ref:`ImmutableCuboidArray` concept * with the same domain as ArrayType * with value_type == ValueType2 * N.B. : Some cases require explicit cast, e.g. for the standard abs function (already defined in arrays/mapped_function.hpp) , or the compiler does not know which std::abs you are talking about :: auto Abs = map( std::function(static_cast< double (*)(double)> (std::abs)) ); * TO DO : clarify the F f or F const & : check code and put an example with std::ref. * **Example** : .. compileblock:: #include using triqs::arrays::matrix; using triqs::clef::placeholder; int main() { // declare and init a matrix placeholder<0> i_; placeholder<1> j_; matrix A (2,2); A(i_,j_) << i_ + j_ ; // the mapped function auto F = triqs::arrays::map([](int i) { return i*2.5;}); matrix B; B = F(A); std::cout<< A << B<< std::endl; // works also with expressions of course B = F( 2*A ); B = B + 3* F(2*A); // ok that is just an example... std::cout<< A << B<< std::endl; } fold ======================================================== * **Purpose** : fold implements the folding (or reduction) on the array. * **Syntax** : If `f` is a function, or a function object of synopsis (T, R being 2 types) :: R f ( T, R ) then :: auto F = fold(f); is a callable object which can fold any array of value_type T. So, if * A is a type which models the :ref:`ImmutableCuboidArray` concept (e.g. an array , a matrix, a vector, an expression, ...) * A::value_type is T then :: fold (f) ( A, R init = R() ) = f( f( f( ... f( a(0,1), f(a(0,0), init))))) Note that : * The order of traversal is the same as foreach. * The precise return type of fold is an implementation detail, depending on the precise type of f, use auto to keep it. * The function f will be inlined if possible, leading to efficient algorithms. * fold is implemented using a foreach loop, hence it is efficient. * **Example** : Many algorithms can be written in form of map/fold. The function *sum* which returns the sum of all the elements of the array is implemented approximately like this (this function already exists in the lib, cf ???) :: template typename A::value_type sum(A const & a) { return fold ( std::plus()) (a); } Note in this example : * the simplicity of the code * the genericity : it is valid for any dimension of array. * internally, the library will rewrite it as a series of for loop, ordered in the TraversalOrder of the array and inline the plus operator.